1.Gold compound auranofin inhibits I kappaB kinase (IKK) by modifying Cys-179 of IKK beta subunit.
Kye Im JEON ; Mi Sun BYUN ; Dae Myung JUE
Experimental & Molecular Medicine 2003;35(2):61-66
Antirheumatic gold compounds have been shown to inhibit NF-kB activation by blocking IkB kinase (IKK) activity. To examine the possible inhibitory mechanism of gold compounds, we expressed wild type and mutant forms of IKk alpha and beta subunits in COS-7 cells and determined the effect of gold on the activity of these enzymes both in vivo and in vitro. Substitution of Cys-179 of IKK beta with alanine (C179A) rendered the enzyme to become resistant to inhibition by a gold compound auranofin, however, similar protective effect was not observed with an equivalent level of IKK alpha (C178A) mutant expressed in the cells. Auranofin inhibited constitutively active IKK alpha and beta and variants; IKK alpha (S176E, S180E) or IKK beta (S177E, S181E), suggesting that gold directly cause inhibition of activated enzyme. The different inhibitory effect of auranofin on IKK alpha (C178A) and IKK beta (C179A) mutants indicates that gold could inhibit the two subunits of IKK in a different mode, and the inhibition of NF- kB and IKK activation induced by inflammatory signals in gold-treated cells appears through its interaction with Cys-179 of IKK beta.
Amino Acid Substitution
;
Animals
;
Auranofin/*pharmacology
;
COS Cells
;
Cysteine/genetics/*metabolism
;
Enzyme Activation/drug effects
;
Gold Compounds/*pharmacology
;
Protein Subunits/chemistry
;
Protein-Serine-Threonine Kinases/*antagonists & inhibitors/chemistry/genetics/*metabolism
;
Sulfhydryl Compounds/pharmacology
2.Nuclear factor kappaB (NF-kappaB) pathway as a therapeutic target in rheumatoid arthritis.
Dae Myung JUE ; Kye Im JEON ; Jae Yeon JEONG
Journal of Korean Medical Science 1999;14(3):231-238
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint swelling and progressive destruction of cartilage and bone. Current RA treatments are largely empirical in origin and their precise mechanism of action is uncertain. Increasing evidence shows that chronic inflammatory diseases such as RA are caused by prolonged production of proinflammatory cytokines including tumor necrosis factor (TNF) and interleukin 1 (IL-1). The nuclear factor kappaB (NF-kappaB) plays an essential role in transcriptional activation of TNF and IL-1. NF-kappaB is induced by many stimuli including TNF and IL-1, forming a positive regulatory cycle that may amplify and maintain RA disease process. NF-kappaB and enzymes involved in its activation can be a target for anti-inflammatory treatment. Aspirin and sodium salicylate inhibit activation of NF-KB by blocking IkappaB kinase, a key enzyme in NF-kappaB activation. Glucocorticoids suppress expression of inflammatory genes by binding glucocorticoid receptor with NF-kappaB, and increasing expression of inhibitory protein of NF-kappaB, IkappaBalpha. Sulfasalazine and gold compounds also inhibit NF-kappaB activation. Continuing advances in our understanding of action mechanism of antirheumatic agents will benefit the future development of RA regimens with greater efficacy and less toxicity.
Animal
;
Antirheumatic Agents/therapeutic use*
;
Arthritis, Rheumatoid/therapy*
;
Arthritis, Rheumatoid/metabolism
;
Arthritis, Rheumatoid/immunology
;
Cytokines/immunology
;
Cytokines/genetics
;
Gene Expression Regulation
;
Human
;
Macrophages/immunology
;
NF-kappa B/metabolism*
;
NF-kappa B/immunology
;
NF-kappa B/biosynthesis
;
Tumor Necrosis Factor/genetics
3.Dual effect of oxidative stress on NF-kappaB activation in HeLa cells.
Mi Sun BYUN ; Kye Im JEON ; Jae Won CHOI ; Jae Yong SHIM ; Dae Myung JUE
Experimental & Molecular Medicine 2002;34(5):332-339
Reactive oxygen species (ROS) has been implicated as an inducer of NF-kappaB activity in numbers of cell types where exposure of cells to ROS such as H2O2 leads to NF-kappaB activation. In contrast, exposure to oxidative stress in certain cell types induced reduction of tumor necrosis factor (TNF)-induced NF-kappaB activation. And various thiol-modifying agents including gold compounds and cyclopentenone prostaglandins inhibit NF-kappaB activation by blocking IkappaB kinase (IKK). To understand such conflicting effect of oxidative stress on NF-kappaB activation, HeLa cells were incubated with H2O2 or diamide and TNF-induced expression of NF-kappaB reporter gene was measured. NF-kappaB activation was significantly blocked by these oxidizing agents, and the inhibition was accompanied with reduced nuclear NF-kappaB and inappropriate cytosolic IkappaB degradation. H2O2 and diamide also inhibited IKK activation in HeLa and RAW 264.7 cells stimulated with TNF and lipopolysaccharide, respectively, and directly blocked IKK activity in vitro. In cells treated with H2O2 alone, nuclear NF-kappaB was induced after 2 h without detectible degradation of cytosolic IkBa or activation of IKK. Our results suggest that ROS has a dual effect on NF-kappaB activation in the same HeLa cells: it inhibits acute IKK-mediated NF-kappaB activation induced by inflammatory signals, while longer-term exposure to ROS induces NF-kappaB activity through an IKK-independent pathway.
Cell Nucleus/drug effects/metabolism
;
Cytosol/drug effects/metabolism
;
Diamide/pharmacology
;
Hela Cells/drug effects/metabolism
;
Human
;
Hydrogen Peroxide/pharmacology
;
I-kappa B/drug effects/metabolism
;
NF-kappa B/drug effects/genetics/*metabolism
;
Oxidants/pharmacology
;
*Oxidative Stress
;
Protein-Serine-Threonine Kinases/metabolism
;
Signal Transduction/drug effects
;
Time Factors
;
Transcription, Genetic
;
Tumor Necrosis Factor/pharmacology
4.The expression of Foxp3 protein by retroviral vector-mediated gene transfer of Foxp3 in C57BL/6 mice.
Insun HWANG ; Danbee HA ; So Jin BING ; Kyong Leek JEON ; Ginnae AHN ; Dae Seung KIM ; Jinhee CHO ; Jaehak LIM ; Sin Hyeog IM ; Kyu Kye HWANG ; Youngheun JEE
Korean Journal of Veterinary Research 2012;52(3):183-191
The maintenance of peripheral immune tolerance and prevention of chronic inflammation and autoimmune disease require CD4+CD25+ T cells (regulatory T cells). The transcription factor Foxp3 is essential for the development of functional, regulatory T cells, which plays a prominent role in self-tolerance. Retroviral vectors can confer high level of gene transfer and transgene expression in a variety of cell types. Here we observed that following retroviral vector-mediated gene transfer of Foxp3, transductional Foxp3 expression was increased in the liver, lung, brain, heart, muscle, spinal cord, kidney and spleen. One day after vector administration, high levels of transgene and gene expression were observed in liver and lung. At 2 days after injection, transductional Foxp3 expression level was increased in brain, heart, muscle and spinal cord, but kidney and spleen exhibited a consistent low level. This finding was inconsistent with the increase in both CD4+CD25+ T cell and CD4+Foxp3+ T cell frequencies observed in peripheral immune cells by fluorescence-activated cell-sorting (FACS) analysis. Retroviral vector-mediated gene transfer of Foxp3 did not lead to increased numbers of CD4+CD25+ T cell and CD4+Foxp3+ T cell. These results demonstrate the level and duration of transductional Foxp3 gene expression in various tissues. A better understanding of Foxp3 regulation can be useful in dissecting the cause of regulatory T cells dysfunction in several autoimmune diseases and raise the possibility of enhancing suppressive functions of regulatory T cells for therapeutic purposes.
Animals
;
Autoimmune Diseases
;
Brain
;
Gene Expression
;
Heart
;
Immune Tolerance
;
Inflammation
;
Kidney
;
Liver
;
Lung
;
Mice
;
Muscles
;
Spinal Cord
;
Spleen
;
T-Lymphocytes
;
T-Lymphocytes, Regulatory
;
Transcription Factors
;
Transgenes
;
Zidovudine
5.Current Awareness and Use of the Strain Echocardiography in Routine Clinical Practices: Result of a Nationwide Survey in Korea.
Ju Hee LEE ; Jae Hyeong PARK ; Seung Woo PARK ; Woo Shik KIM ; Il Suk SOHN ; Jung Yeon CHIN ; Jung Sun CHO ; Ho Joong YOUN ; Hae Ok JUNG ; Sun Hwa LEE ; Seong Hwan KIM ; Wook Jin CHUNG ; Chi Young SHIM ; Jin Won JEONG ; Eui Young CHOI ; Se Joong RIM ; Jang Young KIM ; Kye Hun KIM ; Joon Han SHIN ; Dae Hee KIM ; Ung JEON ; Jung Hyun CHOI ; Yong Jin KIM ; Seung Jae JOO ; Ki Hong KIM ; Kyoung Im CHO ; Goo Yeong CHO
Journal of Cardiovascular Ultrasound 2017;25(3):91-97
BACKGROUND: Because conventional echocardiographic parameters have several limitations, strain echocardiography has often been introduced in clinical practice. However, there are also obstacles in using it in clinical practice. Therefore, we wanted to find the current status of awareness on using strain echocardiography in Korea. METHODS: We conducted a nationwide survey to evaluate current use and awareness of strain echocardiography from the members of the Korean Society of Echocardiography. RESULTS: We gathered total 321 questionnaires from 25 cardiology centers in Korea. All participants were able to perform or interpret echocardiographic examinations. All participating institutions performed strain echocardiography. Most of our study participants (97%) were aware of speckle tracking echocardiography and 185 (58%) performed it for clinical and research purposes. Two-dimensional strain echocardiography was the most commonly used modality and left ventricle (LV) was the most commonly used cardiac chamber (99%) for clinical purposes. Most of the participants (89%) did not think LV strain can replace LV ejection fraction (LVEF) in their clinical practice. The common reasons for not performing routine use of strain echocardiography was diversity of strain measurements and lack of normal reference value. Many participants had a favorable view of the future of strain echocardiography. CONCLUSION: Most of our study participants were aware of strain echocardiography, and all institutions performed strain echocardiography for clinical and research purposes. However, they did not think the LV strain values could replace LVEF. The diversity of strain measurements and lack of normal reference values were common reasons for not using strain echocardiography in clinical practice.
Cardiology
;
Echocardiography*
;
Heart Ventricles
;
Korea*
;
Reference Values