1.Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation.
Bon Hyeock KOO ; Bong Gu YI ; Wi Kwang WANG ; In Young KO ; Kwang Lae HOE ; Young Guen KWON ; Moo Ho WON ; Young Myeong KIM ; Hyun Kyo LIM ; Sungwoo RYOO
Yonsei Medical Journal 2018;59(3):366-375
PURPOSE: Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. MATERIALS AND METHODS: Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. RESULTS: Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. CONCLUSION: Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation.
Animals
;
Aorta
;
Arginase*
;
Arginine
;
Blotting, Western
;
Bromodeoxyuridine
;
Cell Proliferation*
;
Chromatography, High Pressure Liquid
;
Chromatography, Liquid
;
Lipoproteins
;
Luminescence
;
Membranes
;
Muscle, Smooth, Vascular*
;
NADP*
;
NADPH Oxidase*
;
Phosphorylation
;
Phosphotransferases
;
Protein Kinase C
;
Rats
;
Reactive Oxygen Species
;
Superoxides
2.NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells.
Il Hwan PARK ; Hye Mi HWANG ; Byeong Hwa JEON ; Hyung Joo KWON ; Kwang Lae HOE ; Young Myeong KIM ; Sungwoo RYOO
Experimental & Molecular Medicine 2015;47(6):e168-
Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-theta (PKCtheta) and protein kinase C-beta (PKCbeta) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCtheta and PKCbeta stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox-/- mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.
Animals
;
Aorta/*cytology
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Humans
;
Lipoproteins, LDL/*metabolism
;
Mice, Inbred C57BL
;
Mitogen-Activated Protein Kinases/metabolism
;
Muscle, Smooth, Vascular/cytology
;
Myocytes, Smooth Muscle/*cytology
;
NADPH Oxidase/*metabolism
;
Phosphorylation
;
Protein Kinase C/metabolism
;
Signal Transduction
;
Superoxides/metabolism
3.Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.
Sook Jeong LEE ; Sung Ook HWANG ; Eun Joo NOH ; Dong Uk KIM ; Miyoung NAM ; Jong Hyeok KIM ; Joo Hyun NAM ; Kwang Lae HOE
Experimental & Molecular Medicine 2014;46(2):e76-
Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.
Acetylation
;
Antineoplastic Agents/*pharmacology
;
Apoptosis/drug effects
;
Cell Survival/drug effects
;
Chromatin/metabolism
;
Doxorubicin/*pharmacology
;
Drug Synergism
;
Female
;
HeLa Cells
;
Humans
;
Hydroxamic Acids/*pharmacology
;
Transcriptional Activation
;
Tumor Suppressor Protein p53/genetics/*metabolism
;
Uterine Cervical Neoplasms/metabolism
;
bcl-Associated Death Protein/genetics/*metabolism
4.Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.
Minh Cong NGUYEN ; Jong Taek PARK ; Yeong Gwan JEON ; Byeong Hwa JEON ; Kwang Lae HOE ; Young Myeong KIM ; Hyun Kyo LIM ; Sungwoo RYOO
Yonsei Medical Journal 2016;57(6):1329-1338
PURPOSE: Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. RESULTS: SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. CONCLUSION: These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid
;
Acetylcholine
;
Arginase*
;
Arginine
;
Blotting, Western
;
Endothelium
;
Human Umbilical Vein Endothelial Cells
;
NG-Nitroarginine Methyl Ester
;
Nitric Oxide
;
Nitric Oxide Synthase Type III*
;
Oxidation-Reduction
;
Peroxynitrous Acid
;
Phosphorylation*
;
Reactive Oxygen Species
5.Activation of epidermal growth factor receptor is responsible for pervanadate-induced phospholipase D activation.
Young Rae KIM ; Hyun Young CHA ; Kyu LIM ; Byung Doo HWANG ; Kwang Lae HOE ; Uk NAMGUNG ; Seung Kiel PARK
Experimental & Molecular Medicine 2003;35(2):118-124
Pervanadate, a complex of vanadate and H2O2, has an insulin mimetic effect, and acts as an inhibitor of protein tyrosine phosphatase. Pervanadate-induced phospholipase D (PLD) activation is known to be dependent on the tyrosine phosphorylation of cellular proteins and protein kinase C (PKC) activation, and yet underlying molecular mechanisms are not clearly understood. Here, we investigated the signaling pathway of pervanadate-induced PLD activation in Rat2 fibroblasts. Pervanadate increased PLD activity in dose- and time- dependent manner. Protein tyrosine kinase inhibitor, genistein, blocked PLD activation. Interestingly, AG-1478, a specific inhibitor of the tyrosine kinase activity of epidermal growth factor receptor (EGFR) blocked not only the PLD activation completely but also phosphorylation of p38 mitogen- activated protein kinase (MAPK). However, AG-1295, an inhibitor specific for the tyrosine kinase activity of pletlet drived growth factor receptor (PDGFR) did not show any effect on the PLD activation by pervanadate. We further found that pervanadate increased phosphorylation levels of p38, extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). SB203580, a p38 MAPK inhibitor, blocked the PLD activation completely. However, the inhibitions of ERK by the treatment of PD98059 or of JNK by the overexpression of JNK interacting peptide JBD did not show any effect on pervanadate-induced PLD activation. Inhibition or down-regulation of PKC did not alter the pervanadate-induced PLD activation in Rat2 cells. Thus, these results suggest that pervanadate-induced PLD activation is coupled to the transactivation of EGFR by pervanadate resulting in the activation of p38 MAP kinase.
Animals
;
Cell Line
;
Enzyme Activation/drug effects
;
Fibroblasts
;
Mitogen-Activated Protein Kinases/metabolism
;
Phospholipase D/*metabolism
;
Rats
;
Receptor, Epidermal Growth Factor/*agonists/*metabolism
;
Vanadates/*pharmacology
;
src-Family Kinases/metabolism
6.The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells.
Ke Long JIN ; Jeong Yeol PARK ; Eun Joo NOH ; Kwang Lae HOE ; Joo Hak LEE ; Jong Hyeok KIM ; Joo Hyun NAM
Journal of Gynecologic Oncology 2010;21(4):262-268
OBJECTIVE: To investigate the combined effects of cisplatin and the histone deacetylase (HDAC) inhibitors suberoylanilide hydroxamic acid (SAHA) or sirtinol on HeLa cells and assess the mechanism underlying HDAC inhibitor-cisplatin synergy. METHODS: The antineoplastic actions of cisplatin, SAHA and sirtinol, alone and in combination, were evaluated using the tetrazolium dye-based MTT cell proliferation assay, DAPI nuclear staining and cytotoxicity analysis. RESULTS: Exposure to cisplatin, SAHA or sirtinol alone induced a dose-dependent reduction in HeLa cell viability. Combined treatment with cisplatin and SAHA or sirtinol was significantly more cytotoxic than cisplatin alone. Individually, cisplatin, SAHA and sirtinol activated caspase-3 and induced apoptosis, but the effects of combined treatment were greater. Importantly, both HDAC inhibitors dose-dependently inhibited the expression of the antiapoptotic proteins Bcl-2 and x-linked inhibitor of apoptosis protein (XIAP). CONCLUSION: The combination of cisplatin and SAHA or sirtinol had synergistic effect on the HeLa cell viability. This potentiation of cisplatin activity was associated with HDAC inhibitor-mediated down-regulation of Bcl-2 and XIAP. These may result from the relaxation of chromatin by these HDAC inhibitors that increase cisplatin sensitivity by enhancing the accessibility of DNA to cisplatin and transcriptional regulators.
Apoptosis
;
Benzamides
;
Caspase 3
;
Cell Proliferation
;
Chromatin
;
Cisplatin
;
DNA
;
Down-Regulation
;
HeLa Cells
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases
;
Histones
;
Humans
;
Hydroxamic Acids
;
Indoles
;
Naphthols
;
Proteins
;
Relaxation
;
Uterine Cervical Neoplasms
;
X-Linked Inhibitor of Apoptosis Protein
7.Mutation Analysis of Synthetic DNA Barcodes in a Fission Yeast Gene Deletion Library by Sanger Sequencing.
Minho LEE ; Shin Jung CHOI ; Sangjo HAN ; Miyoung NAM ; Dongsup KIM ; Dong Uk KIM ; Kwang Lae HOE
Genomics & Informatics 2018;16(2):22-29
Incorporation of unique barcodes into fission yeast gene deletion collections has enabled the identification of gene functions by growth fitness analysis. For fine tuning, it is important to examine barcode sequences, because mutations arise during strain construction. Out of 8,708 barcodes (4,354 strains) covering 88.5% of all 4,919 open reading frames, 7,734 barcodes (88.8%) were validated as high-fidelity to be inserted at the correct positions by Sanger sequencing. Sequence examination of the 7,734 high-fidelity barcodes revealed that 1,039 barcodes (13.4%) deviated from the original design. In total, 1,284 mutations (mutation rate of 16.6%) exist within the 1,039 mutated barcodes, which is comparable to budding yeast (18%). When the type of mutation was considered, substitutions accounted for 845 mutations (10.9%), deletions accounted for 319 mutations (4.1%), and insertions accounted for 121 mutations (1.6%). Peculiarly, the frequency of substitutions (67.6%) was unexpectedly higher than in budding yeast (~28%) and well above the predicted error of Sanger sequencing (~2%), which might have arisen during the solid-phase oligonucleotide synthesis and PCR amplification of the barcodes during strain construction. When the mutation rate was analyzed by position within 20-mer barcodes using the 1,284 mutations from the 7,734 sequenced barcodes, there was no significant difference between up-tags and down-tags at a given position. The mutation frequency at a given position was similar at most positions, ranging from 0.4% (32/7,734) to 1.1% (82/7,734), except at position 1, which was highest (3.1%), as in budding yeast. Together, well-defined barcode sequences, combined with the next-generation sequencing platform, promise to make the fission yeast gene deletion library a powerful tool for understanding gene function.
DNA*
;
Gene Deletion*
;
Mutation Rate
;
Open Reading Frames
;
Polymerase Chain Reaction
;
Saccharomycetales
;
Schizosaccharomyces*
8.Optimization of a microarray for fission yeast
Dong Uk KIM ; Minho LEE ; Sangjo HAN ; Miyoung NAM ; Sol LEE ; Jaewoong LEE ; Jihye WOO ; Dongsup KIM ; Kwang Lae HOE
Genomics & Informatics 2019;17(3):e28-
Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up- and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 µm, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 µm, 48K) could represent ~10,000 up-/down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.
Oligonucleotides
;
Polymerase Chain Reaction
;
Schizosaccharomyces
;
Yeasts
9.Arginase II inhibition prevents interleukin-8 production through regulation of p38 MAPK phosphorylation activated by loss of mitochondrial membrane potential in nLDL-stimulated hAoSMCs
Bon Hyeock KOO ; Bong Gu YI ; Myeong Seon JEONG ; Seung Hea KWON ; Kwang Lae HOE ; Young Guen KWON ; Moo Ho WON ; Young Myeong KIM ; Sungwoo RYOO
Experimental & Molecular Medicine 2018;50(2):e438-
Arginase inhibition exhibits beneficial effects in vascular endothelial and smooth muscle cells. In human aortic smooth muscle cells (hAoSMCs), native low-density lipoprotein (nLDL) induced the production of interleukin-8 (IL-8) that is involved in the pathogenesis of cardiovascular diseases. Therefore, we examined the effect of arginase inhibition on IL-8 production and the underlying mechanism. In hAoSMCs, reverse transcription–PCR, western blotting and immunocytochemistry with MitoTracker confirmed that arginase II was confined predominantly to mitochondria. The mitochondrial membrane potential (MMP) was assessed using tetramethylrhodamine ethyl ester. The MMP decreased upon nLDL stimulation but was restored upon arginase inhibition. MMP loss caused by nLDL was prevented by treatment with the intracellular Ca(2+) chelator BAPTA-AM. In mitochondrial Ca(2+) measurements using Rhod-2 AM, increased mitochondrial Ca(2+) levels by nLDL were inhibited upon preincubation with an arginase inhibitor. Among the polyamines, spermine, an arginase activity-dependent product, caused mitochondrial Ca(2+) movement. The nLDL-induced MMP change resulted in p38 mitogen-activated protein kinase (MAPK) phosphorylation and IL-8 production and was prevented by the arginase inhibitors BAPTA and ruthenium 360. In isolated AoSMCs from ApoE(−/−) mice fed a high-cholesterol diet, arginase activity, p38 MAPK phosphorylation, spermine and mitochondrial Ca(2+) levels and keratinocyte-derived chemokine (KC) production were increased compared with wild-type (WT) mice. However, in AoSMCs isolated from arginase II-null mice, increases in MMP and decreases in mitochondrial Ca(2+) levels were noted compared with WT and were associated with p38 MAPK activation and IL-8 production. These data suggest that arginase activity regulates the change in MMP through Ca(2+) uptake that is essential for p38 MAPK phosphorylation and IL-8 production.
10.8-Methoxypsoralen Induces Apoptosis by Upregulating p53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells
Eun Kyoung CHOI ; Hae Dong KIM ; Eun Jung PARK ; Seuk Young SONG ; Tien Thuy PHAN ; Miyoung NAM ; Minjung KIM ; Dong-Uk KIM ; Kwang-Lae HOE
Biomolecules & Therapeutics 2023;31(2):219-226
Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOPinduced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.