1.Hints from a Female Patient with Breast Cancer Who Later Presented with Cowden Syndrome
Wen-Chung WANG ; Tai-Cheng HOU ; Chen-Yun KUO ; Yen-Chein LAI
Journal of Breast Cancer 2020;23(4):430-437
A 51-year-old woman presented with metachronous tumor development in bilateral breasts, thyroid, and endometrium. Additional signs and symptoms fulfilled the National Comprehensive Cancer Network criteria for Cowden syndrome. Immunohistochemistry showed loss of PTEN expression in all tumors. Single nucleotide variants, 647 germline variants (including one each in PTEN and MSH3), and 21 somatic mutations within exons were detected in all tumors after whole-exome sequencing. There were 0, 11, and 46 specific somatic mutations in bilateral breasts, thyroid, and endometrial cancers, respectively.Although PTEN mutation is key to the development of Cowden syndrome, DNA repair dysfunction might be the initial driver of mutations. Fewer mutations were required to induce initial bilateral breast carcinomas, with subsequent thyroid and endometrial carcinomas requiring more mutations for induction. When genetic screening is unavailable, breast cancer patients with clinical manifestations of Cowden syndrome must be carefully assessed for secondary malignancies, such as thyroid and endometrial carcinomas.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
7.The Effect of Agomelatine in Behavioral and Psychological Symptoms of Dementia
Carol Sheei-Meei WANG ; Kuo-Sheng CHENG ; Chia-Hung TANG ; Ming-Chyi PAI ; Pai-Lien CHEN ; Pei-Fang CHIEN
Clinical Psychopharmacology and Neuroscience 2022;20(4):701-714
Objective:
Moderate and severe behavioral and psychological symptoms of dementia (BPSD) often need medical treatment to improve symptoms. Agomelatine is a selective melatonergic (MT1/MT2) agonist that has normalizing effects on disturbed circadian rhythms and disrupted sleep−wake cycles. Its activity of 5HT-2C receptor antagonism is associated with lessening depression and anxiety and increasing slow-wave sleep. Based on past clinical records and current findings it suggests that agomelatine can improve BPSD for patients. This retrospective cohort study was designed to compare the BPSD before and after using agomelatine.
Methods:
Records of dementia cases who had ever received agomelatine treatment for BPSD in a general hospital setting during the past 2.5 years were identified and reviewed. Scores from before and after 3 months of treatment with agomelatine were collected for Neuropsychiatric Inventory (NPI), Brief Psychiatric Rating Scale (BPRS), and Clinical Global Impression (CGI) to compare and analyze the difference of psychological and behavioral symptoms pre- and post-agomelatine used.
Results:
Records of 144 cases of dementia with BPSD who had ever used agomelatine from January 2015 to June 2017 were collected. All of the 112 cases had BPRS and CGI scores, of which 75 cases had additional NPI scores. Among these 112 cases, the BPRS and CGI scores were significantly improved in all types of dementia. NPI scores indicated that the use of agomelatine alleviated obvious symptoms and decreased overall distress, especially in the depression/poor mood, anxiety, and sleepight behavior.
Conclusion
It is consistent with an effective result of agomelatine in improving BPSD.
8.Differentiation of the Infarct Core from Ischemic Penumbra within the First 4.5 Hours, Using Diffusion Tensor Imaging-Derived Metrics: A Rat Model.
Duen Pang KUO ; Chia Feng LU ; Michelle LIOU ; Yung Chieh CHEN ; Hsiao Wen CHUNG ; Cheng Yu CHEN
Korean Journal of Radiology 2017;18(2):269-278
OBJECTIVE: To investigate whether the diffusion tensor imaging-derived metrics are capable of differentiating the ischemic penumbra (IP) from the infarct core (IC), and determining stroke onset within the first 4.5 hours. MATERIALS AND METHODS: All procedures were approved by the local animal care committee. Eight of the eleven rats having permanent middle cerebral artery occlusion were included for analyses. Using a 7 tesla magnetic resonance system, the relative cerebral blood flow and apparent diffusion coefficient maps were generated to define IP and IC, half hour after surgery and then every hour, up to 6.5 hours. Relative fractional anisotropy, pure anisotropy (rq) and diffusion magnitude (rL) maps were obtained. One-way analysis of variance, receiver operating characteristic curve and nonlinear regression analyses were performed. RESULTS: The evolutions of tensor metrics were different in ischemic regions (IC and IP) and topographic subtypes (cortical, subcortical gray matter, and white matter). The rL had a significant drop of 40% at 0.5 hour, and remained stagnant up to 6.5 hours. Significant differences (p < 0.05) in rL values were found between IP, IC, and normal tissue for all topographic subtypes. Optimal rL threshold in discriminating IP from IC was about -29%. The evolution of rq showed an exponential decrease in cortical IC, from -26.9% to -47.6%; an rq reduction smaller than 44.6% can be used to predict an acute stroke onset in less than 4.5 hours. CONCLUSION: Diffusion tensor metrics may potentially help discriminate IP from IC and determine the acute stroke age within the therapeutic time window.
Animal Care Committees
;
Animals
;
Anisotropy
;
Cerebrovascular Circulation
;
Diffusion Tensor Imaging
;
Diffusion*
;
Gray Matter
;
Infarction, Middle Cerebral Artery
;
Models, Animal*
;
Rats*
;
ROC Curve
;
Stroke
9.Effects of 5HT1A Activation on Depression Profile Following 5-HT Depletion in Rats Lacking Social Attachment Since Weanling.
Kuo Jung CHANG ; Yu Jung CHEN ; Jing Yi CHUNG ; Chen Cheng LIN ; Yia Ping LIU
Psychiatry Investigation 2018;15(10):1000-1006
OBJECTIVE: Post weanling isolation-reared (IR) rats are featured with depressive phenotype, yet its mechanism is not clearly defined particularly in terms of the involvement of central 5-HT1A receptors. The present study aims to examine the effects of 5HT1A activation on forced swim test (FST) in IR rats following 5-HT depletion. METHODS: Social control (SOC) and IR rats received an intracerebraoventricular (ICV) injection of 5-HT depletion agent, 5,7-DHT. 14 days after the surgery, rats were assessed their performance in FST with or without the challenge with a 5-HT1A agonist, 8-OH-DPAT. Rats were then sacrificed for analyzing their 5-HT tissue levels and the expressions of their 5-HA1A receptors in prefrontal cortex (PFC), hippocampus (HPX), and amygdala (AMY). RESULTS: 5,7-DHT decreased the tissue concentration of 5-HT in both IR and SOC rats. IR rats were more immobile and less sensitive to the lesion-induced immobility, however this effect was reversed by acute challenge of 8-OH-DPAT. 5,7-DHT lesion increased the expression of PFC 5-HT1A receptors. CONCLUSION: The integrity of central 5-HT system is developmentally crucial for the 5-HT1A-relevant depression profile in rats of social isolation.
8-Hydroxy-2-(di-n-propylamino)tetralin
;
Amygdala
;
Animals
;
Depression*
;
Hippocampus
;
Phenotype
;
Prefrontal Cortex
;
Rats*
;
Receptor, Serotonin, 5-HT1A
;
Serotonin 5-HT1 Receptor Agonists
;
Serotonin*
;
Social Control, Formal
;
Social Isolation
10.MR Imaging of Pregnancy Luteoma: a Case Report and Correlation with the Clinical Features.
Hung Wen KAO ; Ching Jiunn WU ; Kuo Teng CHUNG ; Sheng Ru WANG ; Cheng Yu CHEN
Korean Journal of Radiology 2005;6(1):44-46
We report here on a 26-year-old pregnant female who developed hirsutism and virilization during her third trimester along with a significantly elevated serum testosterone level. Abdominal US and MR imaging studies were performed, and they showed unique imaging features that may suggest the diagnosis of pregnancy luteoma in the clinical context. After the delivery, the serum testosterone level continued to decrease, and it returned to normal three weeks postpartum. The follow-up imaging findings were closely correlated with the clinical presentation.
Adult
;
Contrast Media
;
Diagnosis, Differential
;
Female
;
Gadolinium DTPA/diagnostic use
;
Hirsutism/etiology
;
Humans
;
Luteoma/complications/*diagnosis
;
Magnetic Resonance Imaging
;
Ovarian Neoplasms/complications/*diagnosis
;
Pregnancy
;
Pregnancy Complications, Neoplastic/*diagnosis
;
Pregnancy Outcome
;
Ultrasonography, Prenatal
;
Virilism/etiology