1.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
2.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
3.Progress in preclinical studies of xenogeneic lung transplantation and single-center technical experience
Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Shiyu LIN ; Zizi ZHOU ; Taiyun WEI ; Chunxiao HU ; Hongjiang WEI ; Kun QIAO
Organ Transplantation 2025;16(6):874-880
Lung transplantation is the ultimate therapeutic option for end-stage pulmonary diseases such as interstitial pneumonia, chronic obstructive pulmonary disease and pneumoconiosis. Currently, the shortage of allogeneic lung donors significantly limits the opportunity for end-stage lung disease patients to receive lung transplantation. In recent years, with the rapid development of biomedical engineering technologies, especially the major breakthroughs in genetic modification and cloning, xenogeneic lung transplantation has shown important potential for clinical translation. Among them, genetically modified pigs have become the most promising xenogeneic lung source due to the close similarity of organ size and physiological characteristics to humans, and the ability to perform targeted gene knockouts (such as α-Gal antigen knockout) to reduce the occurrence of hyperacute rejection. This article focuses on the research progress of porcine xenogeneic lung transplantation, systematically reviews the latest achievements and challenges in animal experiments and human trials, and introduces the technical experience accumulated by Shenzhen Third People's Hospital in the porcine-to-monkey xenogeneic lung transplantation model, in the hope of providing practical references for future research in this field.
4.Advances in the application of enhanced recovery after surgery in perioperative management of lung transplantation
Qiang FU ; Chunxiao HU ; Shuo ZHENG ; Pilai HUANG ; Xinzhong NING ; Qiang WU ; Jia HUANG ; Fulan CEN ; Peifen CHEN ; Jingyu CHEN ; Kun QIAO
Organ Transplantation 2025;16(6):976-982
Enhanced recovery after surgery (ERAS) is a series of perioperative optimization measures based on evidence-based medicine aimed at achieving rapid recovery. Existing studies have shown that ERAS can effectively reduce surgical stress, decrease the incidence of complications, shorten hospital stays, save medical costs, and improve patient satisfaction. Although lung transplantation techniques have become increasingly mature, lung transplant recipients still have a high incidence of complications during perioperative period. To further improve the perioperative survival rate of lung transplant recipients, introducing ERAS concept into the perioperative management strategy of lung transplantation is of great significance for reducing incidence of perioperative complications, promoting rapid recovery and long-term survival of lung transplant recipients. This article discusses the advances in application of ERAS concept in the perioperative management of lung transplantation, aiming to provide references for optimizing the perioperative management of lung transplant recipients and reducing perioperative complications.
5.Application of Assessment Scales in Palliative Care for Glioma: A Systematic Review.
Zhi-Yuan XIAO ; Tian-Rui YANG ; Ya-Ning CAO ; Wen-Lin CHEN ; Jun-Lin LI ; Ting-Yu LIANG ; Ya-Ning WANG ; Yue-Kun WANG ; Xiao-Peng GUO ; Yi ZHANG ; Yu WANG ; Xiao-Hong NING ; Wen-Bin MA
Chinese Medical Sciences Journal 2025;40(3):211-218
BACKGROUND AND OBJECTIVE: Patients with glioma experience a high symptom burden and have diverse palliative care needs. However, the assessment scales used in palliative care remain non-standardized and highly heterogeneous. To evaluate the application patterns of the current scales used in palliative care for glioma, we aim to identify gaps and assess the need for disease-specific scales in glioma palliative care. METHODS: We conducted a systematic search of five databases including PubMed, Web of Science, Medline, EMBASE, and CINAHL for quantitative studies that reported scale-based assessments in glioma palliative care. We extracted data on scale characteristics, domains, frequency, and psychometric properties. Quality assessments were performed using the Cochrane ROB 2.0 and ROBINS-I tools. RESULTS: Of the 3,405 records initially identified, 72 studies were included. These studies contained 75 distinct scales that were used 193 times. Mood (21.7%), quality of life (24.4%), and supportive care needs (5.2%) assessments were the most frequently assessed items, exceeding half of all scale applications. Among the various assessment dimensions, the Distress Thermometer (DT) was the most frequently used tool for assessing mood, while the Short Form-36 Health Survey Questionnaire (SF-36) was the most frequently used tool for assessing quality of life. The Mini Mental Status Examination (MMSE) was the most common tool for cognitive assessment. Performance status (5.2%) and social support (6.8%) were underrepresented. Only three brain tumor-specific scales were identified. Caregiver-focused scales were limited and predominantly burden-oriented. CONCLUSIONS: There are significant heterogeneity, domain imbalances, and validation gaps in the current use of assessment scales for patients with glioma receiving palliative care. The scale selected for use should be comprehensive and user-friendly.
Humans
;
Glioma/psychology*
;
Palliative Care/methods*
;
Quality of Life
;
Psychometrics
;
Brain Neoplasms/psychology*
6.Study on the effect of postoperative implant fusion after anterior cervical discectomy and fusion by applying nano-hydroxyapatite/collagen composite in patients with low bone mass cervical spondylosis.
Shi-Bo ZHOU ; Xing YU ; Ning-Ning FENG ; Zi-Ye QIU ; Yu-Kun MA ; Yang XIONG
China Journal of Orthopaedics and Traumatology 2025;38(8):800-809
OBJECTIVE:
To explore the effect of nano-hydroxyapatite/collagen composite (nHAC) on bone graft fusion after anterior cervical discectomy and fusion (ACDF) in patients with cervical spondylosis and low bone mass.
METHODS:
A retrospective analysis was conducted on 47 patients with low bone mass who underwent ACDF from 2017 to 2021. They were divided into the nHAC group and the allogeneic bone group according to different bone graft materials. The nHAC group included 26 cases, with 8 males and 18 females;aged 50 to 78 years old with an average of (62.81±7.79) years old;the CT value of C2-C7 vertebrae was (264.16±36.33) HU. The allogeneic bone group included 21 cases, with 9 males and 12 females;aged 54 to 75 years old with an average of (65.95±6.58) years old;the CT value of C2-C7 vertebrae was (272.39±40.44) HU. The visual analogue scale (VAS), neck disability index (NDI), and Japanese Orthopaedic Association (JOA) spinal cord function score were compared before surgery, 1 week after surgery, and at the last follow-up to evaluate the clinical efficacy. Imaging assessment included C2-C7 Cobb angle, surgical segment height, intervertebral fusion, and whether the cage subsidence occurred at 1 week after surgery and the last follow-up.
RESULTS:
The follow-up duration ranged from 26 to 39 months with an average of (33.27±3.34) months in the nHAC group and 26 to 41 months with an average of (31.86±3.57) months in the allogeneic bone group. At 1 week after surgery and the last follow-up, the VAS, NDI scores, and JOA scores in both groups were significantly improved compared with those before surgery, with statistically significant differences (P<0.05). At 1 week after surgery, the C2-C7 Cobb angles in the nHAC group and the allogeneic bone group were (14.26±10.32)° and (14.28±8.20)° respectively, which were significantly different from those before surgery (P<0.05). At the last follow-up, the C2-C7 Cobb angles in both groups were smaller than those at 1 week after surgery, with statistically significant differences (P<0.05). At 1 week after surgery, the height of the surgical segment in the nHAC group was (31.65±2.55) mm, and that in the allogeneic bone group was (33.63±3.26) mm, which were significantly different from those before surgery (P<0.05). At the last follow-up, the height of the surgical segment in both groups decreased compared with that at 1 week after surgery, with statistically significant differences (P<0.05). At the last follow-up, 39 surgical segments were fused and 6 cages subsided in the nHAC group;40 surgical segments were fused and 7 cages subsided in the allogeneic bone group;there was no statistically significant difference between the two groups (P>0.05). Compared with the CT value of vertebrae without cage subsidence, the CT value of vertebrae with cage subsidence in both groups was significantly lower, with a statistically significant difference (P<0.05).
CONCLUSION
The application of nHAC in ACDF for patients with low bone mass can achieve effective fusion of the surgical segment. There is no significant difference in improving clinical efficacy, intervertebral fusion, and cage subsidence compared with the allogeneic bone group. With the extension of follow-up time, the C2-C7 Cobb angle decreases, the height of the surgical segment is lost, and the cage subsides in both the nHAC group and the allogeneic bone group, which may be related to low bone mass. Low bone mass may be one of the risk factors for cervical spine sequence changes, surgical segment height loss, and cage subsidence after ACDF.
Humans
;
Male
;
Female
;
Middle Aged
;
Spondylosis/physiopathology*
;
Spinal Fusion/methods*
;
Cervical Vertebrae/surgery*
;
Aged
;
Diskectomy
;
Durapatite
;
Retrospective Studies
;
Collagen/chemistry*
7.Influence of Outdoor Light at Night on Early Reproductive Outcomes of In Vitro Fertilization and Its Threshold Effect: Evidence from a Couple-Based Preconception Cohort Study.
Wen Bin FANG ; Ying TANG ; Ya Ning SUN ; Yan Lan TANG ; Yin Yin CHEN ; Ya Wen CAO ; Ji Qi FANG ; Kun Jing HE ; Yu Shan LI ; Ya Ning DAI ; Shuang Shuang BAO ; Peng ZHU ; Shan Shan SHAO ; Fang Biao TAO ; Gui Xia PAN
Biomedical and Environmental Sciences 2025;38(8):1009-1015
8.Finite element analysis on correction effect of varus foot orthosis based on the three-point force principle
Tianliang NING ; Kun WANG ; Lingbiao WANG ; Pengfei HAN
Chinese Journal of Tissue Engineering Research 2024;28(6):891-899
BACKGROUND:Three-point mechanics is an effective method for ankle foot orthosis correction and prevention of various foot diseases.At present,the clinical application research on 3D printing ankle foot orthosis has been widespread;however,there are relatively few reports on numerical simulation and finite element analysis involving three-point mechanical correction.There is a lack of relevant biomechanical experimental verification. OBJECTIVE:Three-point force was loaded to analyze the composite model of ankle foot orthosis and foot by finite element method,observing the effect of foot correction with ankle foot orthosis under three-point force intervention,verifying the effectiveness of three-point force and the reliability of ankle foot orthosis. METHODS:A three-dimensional foot and ankle model of a healthy volunteer was constructed based on the medical image processing software Mimics.Rodin 4D and Geomagic reverse engineering software were used to optimize the models and design personalized ankle foot orthosis models.Solidworks software was utilized to turn the ankle model inside for 10° to simulate the foot varus disease.Static loading was carried out on the foot force application area by ANSYS software combined with the three-point mechanics principle.The deformation and stress changes of the foot and ankle tissues were analyzed when the human foot pain threshold was met.The display dynamics was used to further verify the effectiveness of the three-point force applied by the ankle foot orthosis. RESULTS AND CONCLUSION:(1)The personalized ankle foot orthosis designed in this paper had the effect of preventing and fixing foot and ankle varus.The ankle varus was 1.81 mm after being loaded with 1 N·m of varus when not wearing ankle foot orthosis,while it was only 0.44 mm after wearing ankle foot orthosis,the deformation rate was reduced by 75.7%,and the effect of preventing varus was significantly enhanced.(2)When only coronal correction was performed,the low calcaneal force would aggravate the varus angle of the front foot.After adjusting the correction force on the inside of the heel and above the medial malleolus,the varus angle of the front foot and the calcaneus position were improved;however,the medial phalangeal region of the foot still had different degrees of adduction and displacement,which would aggravate the adduction deformity of the patient's front foot.(3)The correction effect of the coronal plane and horizontal plane was better than that of the single coronal plane.There was no adduction and displacement of the medial phalanges of the front foot and the varus angle of the front foot decreased under the force(25,10,10,20 N)of the medial heel,the medial shaft of the first metatarsal,below the lateral malleolus and above the medial malleolus,and the valgus along the X-axis was corrected by 1.395 mm,the calcaneus valgus was corrected by 1.227 mm.The calcaneus varus angle was corrected from 10.21° to 7.25°,and the varus angle was improved by 28.9%.(4)The lateral plantar metatarsal load decreased,the medial plantar metatarsal load increased under the action of a two-plane three-point force,and the plantar bone stress was significantly improved after correction.Thus,the reliability of the three-point force principle was further verified.This study provides an important theoretical support for the implementation of ankle foot orthosis in the treatment of varus in clinical practice.
9.Research Advance on Smartphone-based Visual Biosensor in Point-of-Care Testing
Xian-Xin XIANG ; Hua-Yue SUN ; Hui-Ning CHAI ; Kun YU ; Li-Jun QU ; Guang-Yao ZHANG ; Xue-Ji ZHANG
Chinese Journal of Analytical Chemistry 2024;52(2):145-156
Human physiological indicators have become an important standard for assessing health in modern society.Traditional detection methods often require a separate laboratory,complex operation process and long detection time,so it is urgent to develop portable,fast and accurate on-site detection technologies for bioanalysis.Point-of-care testing(POCT),which differs from traditional laboratory testing,can realize the rapid in situ detection of biomarkers without the complicated analytical process of the laboratory.Smartphones,which are an essential tool in our daily life,not only have independent operating systems and built-in storage functions,but also have high-definition cameras,which have great application potential in POCT visualization.The combination of various biosensing technologies and smartphones has developed into a new direction in the field of POCT.This review mainly introduced the research progress of smartphone-based visual biosensors in POCT in recent years,including colorimetric sensors,fluorescence sensors,chemiluminescence sensors and electrochemiluminescence sensors.Finally,the problems faced by smart-phone-based visual biosensors in the application of POCT were summarized,and their future development was prospected.
10.Mechanism of HMGB1 in scarring after glaucoma drainage valve implantation
Siyuan LIU ; Fan CAO ; Jingjing DING ; Chuanxi WANG ; Biqing DING ; Kun LIANG ; Zhengxuan JIANG ; Ning BAO
International Eye Science 2024;24(1):18-23
AIM: To explore the dynamic expression of high mobility group box 1(HMGB1)in scar tissues after glaucoma drainage valve implantation, and to further reveal the role and possible mechanism of HMGB1 in scarring after glaucoma surgery.METHODS: A total of 60 New Zealand white rabbits were randomly divided into control group(n=20), model group(n=20, silicone implantation under conjunctival sac)and model with drug administration group(n=20, silicone implantation under conjunctival sac combined with 5-fluorouracil injection). The conjunctival tissues were collected at 4 and 8 wk after surgery. HE staining and Masson staining were used to detect the proliferation and distribution of fibroblasts and collagen fibers in conjunctival tissues. Immunohistochemistry was utilized to detect the distribution and changes of HMGB1, transforming growth factor(TGF)-β1, Smad3 and α-smooth muscle actin(SMA)in conjunctival tissues. RT-PCR and Western blot were adopted to detect the mRNA and protein expression of HMGB1, TGF-β1, Smad3 and α-SMA in conjunctival tissues.RESULTS: HE staining and Masson staining showed that the proliferation of inflammatory cells, fibroblasts and collagen fibers in the model group was significantly higher than that in the control group at both 4 and 8 wk. Meanwhile, the proliferation of fibroblasts and collagen fibers in the model with drug administration group was significantly lower than that in the model group. Immunohistochemical staining showed that the expression of HMGB1, TGF-β1, Smad3 and α-SMA protein was observed in the conjunctival tissues of the model group both 4 and 8 wk, with brown and significantly deeper staining of the model group at 8 wk. Meanwhile, the positive staining in the model with drug administration group at both 4 and 8 wk was significantly lower than that in the model group. There was positive correlations between the number of fibroblasts stained with HE and the expression of HMGB1 in the conjunctival tissue of the model group at both 4 and 8 wk(r=0.602, 0.703, all P<0.05). RT-PCR and Western blot revealed that the mRNA and protein expression levels of HMGB1, TGF-β1, Smad3 and α-SMA in the model group were significantly higher than those in the control group at both 4 and 8 wk(all P<0.05). Meanwhile, the mRNA and protein expression levels of HMGB1, TGF-β1, Smad3 and α-SMA in the model with drug administration group were significantly lower than those in the model group(all P<0.05). There was positive correlations between mRNA expressions of HMGB1 and TGF-β1, Smad3 in the model group and the model with drug administration group(all P<0.05).CONCLUSION: The expression of HMGB1 increased at a time-dependent manner after glaucoma valve implantation. HMGB1 acts an indispensable role in the initiation and progression of scar formation after glaucoma surgery, which may be involved in the regulation of TGF-β/Smad signaling pathway.

Result Analysis
Print
Save
E-mail