2.The toxic and protective effects of Polygonum multiflorum on normal and liver injured rats based on the symptom-based prescription theory.
Jing-yao PANG ; Zhao-fang BAI ; Ming NIU ; Can TU ; Zhi-jie MA ; Yan-ling ZHAO ; Kui-jun ZHAO ; Yun YOU ; Jia-bo WANG ; Xiao-he XIAO
Acta Pharmaceutica Sinica 2015;50(8):973-979
The dosage-efficacy/toxicity relationship of the 50% alcohol extracts of Polygonum multiflorum was comparatively investigated on either normal or CCl4-induced chronic liver injury rats, by determining the general condition, serum biochemical indices and liver histopathology, coupled with the factor analysis. The dosages were 10 and 20 g raw materials per kg body weight. Compared with the normal control group, the normal high dose group showed significant increases of the serum alanine transaminase (ALT), total bilirubin (TBIL), high mobility group box 1 (HMGB-1) and interleukin-1β (IL-1β) (P < 0.05 or P < 0.01), as well the frequent incidences of inflammatory cell infiltration, hepatic sinus enlargement and fiber stripes formation in histopathological sections. Compared with the model control group, the model low dose group showed significant declines of serum ALT, aspartate transaminase (AST) and total bile acid (TBA) (P < 0.05), as well the alleviation of vacuoles of hepatocytes, but no amelioration of the inflammatory cell infiltration and fibrous tissue hyperplasia; moreover, the model high dose group showed significant degeneration declines of serum HMGB-1, tumor necrosis factor-α (TNF-α) and IL-1β (P < 0.05, P < 0.01), as well the evident alleviation of vacuoles degeneration of hepatocytes, inflammatory cells infiltration and fibrosis degree. The factor analysis showed that the low dosage treatment had almost neither injuring effect on the normal rats nor protective effect on the model rats; while the high dosage treatment showed observable injuring effect on the normal rats, expressed by the significant increases of the factor-1 (HMGB-1, TNF-α and IL-1β as the main contributors) and factor-2 (TBIL, ALT and TBA as the main contributors) relative to the normal control group. The liver protective effect of the high dosage treatment could be observed with the significant reduction of the factor-1, indicating the effective alleviation of the expression of inflammatory cytokines. In conclusion, it could illustrated the phenomenon of symptom-based prescription theory of Polygonum multiflorum on rat livers: the high dosage of the herb had either an injuring effect on normal rats, or a therapeutic effect on the rats with chronic liver injury.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Bile Acids and Salts
;
metabolism
;
Bilirubin
;
blood
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Drugs, Chinese Herbal
;
pharmacology
;
Fallopia multiflora
;
chemistry
;
HMGB1 Protein
;
metabolism
;
Hepatocytes
;
drug effects
;
Interleukin-1beta
;
metabolism
;
Liver
;
drug effects
;
pathology
;
Plant Extracts
;
pharmacology
;
Rats
;
Tumor Necrosis Factor-alpha
;
metabolism
3.Study on effect of gypenosides on insulin sensitivity of rats with diabetes mellitus via regulating NF-κB signaling pathway.
Kui-Niu ZHU ; Sha-Sha TIAN ; Hui WANG ; Yu-Shan TIAN ; Gui-Zhang GU ; Yao-Yao QIU ; Lu ZHANG ; Hong-Xia YANG
China Journal of Chinese Materia Medica 2021;46(17):4488-4496
This study focused on the ameliorative effects of gypenosides(GPS) on insulin sensitivity and inflammatory factors in rats with type 2 diabetes mellitus(T2 DM) and explored their possible molecular mechanisms. After the successful establishment of T2 DM model, diabetic rats were randomly divided into four groups, including model group, GPS groups(200, 100 mg·kg~(-1)) and metformin group(100 mg·kg~(-1)), with healthy rats serving as the control. After 6-week intragastric administration, fasting blood glucose(FBG) and oral glucose tolerance were examined. The levels of insulin, C-peptide, tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) and C-reactive protein(CRP) in serum were examined. Then the homeostasis model assessment of insulin resistance(HOMA-IR) and insulin sensitivity index(ISI) were calculated. The protein expression levels of phosphorylated insulin receptor substrate-1(p-IRS-1) and phosphorylated protein kinase B(p-Akt) in skeletal muscle were measured by Western blot, as well as those of phosphorylated inhibitor of nuclear factor-κB(NF-κB) kinase β(p-IKKβ), phosphorylated alpha inhibitor of NF-κB(p-IκBα) and phosphorylated p65 subunit of NF-κB(p-p65) in adipose tissue. The relative expression levels of glucose transporter 4(GLUT4) mRNA in skeletal muscle and NF-κB mRNA in adipose tissue were measured by qRT-PCR, and the morphological changes of pancreatic tissue were observed. Compared with the model group, the GPS groups witnessed significant decrease in FBG, marked amelioration of impaired oral glucose tolerance and significant increase in ISI. Further, the high-dose GPS group saw significantly reduced HOMA-IR, TNF-α, IL-1β and CRP, significantly increased expression levels of p-IRS-1(Tyr), p-Akt and GLUT4, and markedly inhibited p-IRS-1(Ser), p-IKKβ, p-IκBα, p-p65 and NF-κB. The concentration of CRP and the expression levels of p-IRS-1(Ser), p-IKKβ, p-IκBα and NF-κB were remarkably reduced in the low-dose GPS group. However, GPS was found less effective in the regulation of serum insulin, C-peptide and IL-6 levels and the alleviation of pancreatic islet injury. The results indicated that GPS can reduce FBG and improve insulin sensitivity in diabetic rats possibly by regulating the NF-κB signaling pathway, inhibiting inflammation, and thereby regulating the expression of key proteins in the insulin signaling pathway.
Animals
;
Diabetes Mellitus, Experimental/drug therapy*
;
Diabetes Mellitus, Type 2/genetics*
;
Gynostemma
;
Insulin
;
Insulin Resistance
;
NF-kappa B/metabolism*
;
Plant Extracts
;
Rats
;
Signal Transduction