1. Paraventricular Nucleus P2X7 Receptors Aggravate Acute Myocardial Infarction Injury via ROS-Induced Vasopressin-V1b Activation in Rats
Wenjing CHENG ; Kokwin OOI ; Chunmei XIA ; Danian ZHU ; Yinggang SUN ; Qin WU ; Yi FENG
Neuroscience Bulletin 2021;37(5):641-656
The present study was designed to investigate the mechanisms by which P2X7 receptors (P2X7Rs) mediate the activation of vasopressinergic neurons thereby increasing sympathetic hyperactivity in the paraventricular nucleus (PVN) of the hypothalamus of rats with acute myocardial ischemia (AMI). The left anterior descending branch of the coronary artery was ligated to induce AMI in rats. The rats were pretreated with BBG (brilliant blue G, a P2X7R antagonist), nelivaptan (a vasopressin V1b receptor antagonist), or diphenyleneiodonium (DPI) [an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor]. Hemodynamic parameters of the heart were monitored. Myocardial injury and cardiomyocyte apoptosis were assessed. In the PVN of AMI rats, P2X7R mediated microglial activation, while reactive oxygen species (ROS) and NADPH oxidase 2 (NOX2) were higher than in the sham group. Intraperitoneal injection of BBG effectively reduced ROS production and vasopressin expression in the PVN of AMI rats. Moreover, both BBG and DPI pretreatment effectively reduced sympathetic hyperactivity and ameliorated AMI injury, as represented by reduced inflammation and apoptosis of cardiomyocytes. Furthermore, microinjection of nelivaptan into the PVN improved cardiac function and reduced the norepinephrine (AE) levels in AMI rats. Collectively, the results suggest that, within the PVN of AMI rats, P2X7R upregulation mediates microglial activation and the overproduction of ROS, which in turn activates vasopressinergic neuron-V1b receptors and sympathetic hyperactivity, hence aggravating myocardial injury in the AMI setting.
2.Microglia-Derived NLRP3 Activation Mediates the Pressor Effect of Prorenin in the Rostral Ventrolateral Medulla of Stress-Induced Hypertensive Rats.
Li HU ; Shutian ZHANG ; Kokwin OOI ; Xuehai WU ; Jiaxiang WU ; Jian CAI ; Yinggang SUN ; Jijiang WANG ; Danian ZHU ; Fuxue CHEN ; Chunmei XIA
Neuroscience Bulletin 2020;36(5):475-492
Increased microglial activation and neuroinflammation within autonomic brain regions such as the rostral ventrolateral medulla (RVLM) have been implicated in stress-induced hypertension (SIH). Prorenin, a member of the brain renin-angiotensin system (RAS), can directly activate microglia. The present study aimed to investigate the effects of prorenin on microglial activation in the RVLM of SIH rats. Rats were subjected to intermittent electric foot-shocks plus noise, this stress was administered for 2 h twice daily for 15 consecutive days, and mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were monitored. The results showed that MAP and RSNA were augmented, and this paralleled increased pro-inflammatory phenotype (M1) switching. Prorenin and its receptor (PRR) expression and the NLR family pyrin domain containing 3 (NLRP3) activation were increased in RVLM of SIH rats. In addition, PLX5622 (a microglial depletion agent), MCC950 (a NLRP3 inhibitor), and/or PRO20 (a (Pro)renin receptor antagonist) had antihypertensive effects in the rats. The NLRP3 expression in the RVLM was decreased in SIH rats treated with PLX5622. Mito-tracker staining showed translocation of NLRP3 from mitochondria to the cytoplasm in prorenin-stimulated microglia. Prorenin increased the ROS-triggering M1 phenotype-switching and NLRP3 activation, while MCC950 decreased the M1 polarization. In conclusion, upregulated prorenin in the RVLM may be involved in the pathogenesis of SIH, mediated by activation of the microglia-derived NLRP3 inflammasome. The link between prorenin and NLRP3 in microglia provides insights for the treatment of stress-related hypertension.