1.Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors
Anna JU ; Soyoung CHOI ; Yeongha JEON ; Kiwan KIM
Brain Tumor Research and Treatment 2024;12(4):208-220
Chimeric antigen receptor (CAR)-T cell therapy, which has demonstrated remarkable efficacy in hematologic malignancies, is being extended to the treatment of refractory solid tumors, including brain tumors. Lymphodepletion (LD) is an essential preconditioning process that enhances CAR-T efficacy by promoting CAR-T cell expansion and persistence in the body, and has become a standard regimen for hematologic cancers. Recent clinical results of CAR-T therapy for solid tumors, including brain tumors, have shown that cyclophosphamide/fludarabine-based preconditioning has potential benefits and is gradually becoming adopted in solid tumor CAR-T trials. Furthermore, some CAR-T trials for solid tumors are attempting to develop LD regimens optimized specifically for solid tumors, distinct from the standard LD regimens used in hematologic cancers. In contrast, CAR-T therapy targeting brain tumors frequently employs locoregionally repeated administration in tumors or cerebrospinal fluid, resulting in less frequent use of LD compared to other solid tumors. Nevertheless, several clinical studies suggest that LD may still provide potential benefits for CAR-T expansion and improvement in clinical responses in systemic CAR-T administration. The studies presented in this review suggest that while LD can be beneficial for enhancing CAR-T efficacy, considerations must be made regarding its compatibility with the CAR-T administration route, potential excessive activation based on CAR-T structural characteristics, and target expression in normal organs. Additionally, given the unique characteristics of brain tumors, optimized selection of LD agents, as well as dosing and regimens, may be required, highlighting the need for further research.
2.Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors
Anna JU ; Soyoung CHOI ; Yeongha JEON ; Kiwan KIM
Brain Tumor Research and Treatment 2024;12(4):208-220
Chimeric antigen receptor (CAR)-T cell therapy, which has demonstrated remarkable efficacy in hematologic malignancies, is being extended to the treatment of refractory solid tumors, including brain tumors. Lymphodepletion (LD) is an essential preconditioning process that enhances CAR-T efficacy by promoting CAR-T cell expansion and persistence in the body, and has become a standard regimen for hematologic cancers. Recent clinical results of CAR-T therapy for solid tumors, including brain tumors, have shown that cyclophosphamide/fludarabine-based preconditioning has potential benefits and is gradually becoming adopted in solid tumor CAR-T trials. Furthermore, some CAR-T trials for solid tumors are attempting to develop LD regimens optimized specifically for solid tumors, distinct from the standard LD regimens used in hematologic cancers. In contrast, CAR-T therapy targeting brain tumors frequently employs locoregionally repeated administration in tumors or cerebrospinal fluid, resulting in less frequent use of LD compared to other solid tumors. Nevertheless, several clinical studies suggest that LD may still provide potential benefits for CAR-T expansion and improvement in clinical responses in systemic CAR-T administration. The studies presented in this review suggest that while LD can be beneficial for enhancing CAR-T efficacy, considerations must be made regarding its compatibility with the CAR-T administration route, potential excessive activation based on CAR-T structural characteristics, and target expression in normal organs. Additionally, given the unique characteristics of brain tumors, optimized selection of LD agents, as well as dosing and regimens, may be required, highlighting the need for further research.
3.Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors
Anna JU ; Soyoung CHOI ; Yeongha JEON ; Kiwan KIM
Brain Tumor Research and Treatment 2024;12(4):208-220
Chimeric antigen receptor (CAR)-T cell therapy, which has demonstrated remarkable efficacy in hematologic malignancies, is being extended to the treatment of refractory solid tumors, including brain tumors. Lymphodepletion (LD) is an essential preconditioning process that enhances CAR-T efficacy by promoting CAR-T cell expansion and persistence in the body, and has become a standard regimen for hematologic cancers. Recent clinical results of CAR-T therapy for solid tumors, including brain tumors, have shown that cyclophosphamide/fludarabine-based preconditioning has potential benefits and is gradually becoming adopted in solid tumor CAR-T trials. Furthermore, some CAR-T trials for solid tumors are attempting to develop LD regimens optimized specifically for solid tumors, distinct from the standard LD regimens used in hematologic cancers. In contrast, CAR-T therapy targeting brain tumors frequently employs locoregionally repeated administration in tumors or cerebrospinal fluid, resulting in less frequent use of LD compared to other solid tumors. Nevertheless, several clinical studies suggest that LD may still provide potential benefits for CAR-T expansion and improvement in clinical responses in systemic CAR-T administration. The studies presented in this review suggest that while LD can be beneficial for enhancing CAR-T efficacy, considerations must be made regarding its compatibility with the CAR-T administration route, potential excessive activation based on CAR-T structural characteristics, and target expression in normal organs. Additionally, given the unique characteristics of brain tumors, optimized selection of LD agents, as well as dosing and regimens, may be required, highlighting the need for further research.
4.Characteristics of Eye Gaze Distribution of Patients with Schizophrenia during the Emotion-Provoking Conversation with Several Virtual Persons.
Mina SONG ; Jeonghun KU ; Kiwan HAN ; Sun Il KIM ; Soo Hee CHOI ; Jae Jin KIM
Journal of Korean Neuropsychiatric Association 2010;49(6):578-585
OBJECTIVES: Impairment of social cognition affects the social functioning of patients with schizophrenia. For example, patients with schizophrenia have been shown to display abnormal eye contact during a one-on-one conversation. This study was designed to investigate the behavioral characteristics of patients with schizophrenia while talking with two people. METHODS: Twenty six patients with schizophrenia and 26 normal controls performed virtual reality conversation tasks, in which they talked with main and assistant avatars under positive or negative emotional conditions. While listening and speaking, the durations of eye gaze with the main and minor avatars were measured from the head orientations of the participants using a positional tracker. RESULTS: Compared with normal controls, the patient group showed a shorter duration of gaze towards the main avatar and a longer duration of gaze towards the assistant avatar. This pattern was more apparent in the negative situation. CONCLUSION: The results suggest a defect in social cognition, in which patients with schizophrenia fail to distribute their gaze appropriately during a conversation with more than one other person.
Cognition
;
Eye
;
Head
;
Humans
;
Orientation
;
Schizophrenia
5.Characteristics of Telepresence by Multisensory Feedback and Related Neural Mechanism in Patients with Schizophrenia : A Functional MRI Study.
Kiwan HAN ; Soo Hee CHOI ; Il Ho PARK ; Hyeongrae LEE ; Sun I KIM ; Jae Jin KIM
Journal of the Korean Society of Biological Psychiatry 2012;19(3):121-127
OBJECTIVES: The multimodal telepresence systems have been adopted in a variety of applications, such as telemedicine, space or underwater teleoperation and videoconference. Multimedia, one of the telepresence systems, has been used in various fields including entertainment, education and communication. The degree of subjective telepresence is defined as the probability that a person perceives to be physically in the remote place when he/she experiences a multisensory feedback from the multimedia. The current study aimed to explore the neural mechanism of telepresence related to multisensory feedback in patients with schizophrenia. METHODS: Brain activity was measured using functional magnetic resonance imaging while fifteen healthy controls and fifteen patients with schizophrenia were experiencing filmed referential conversation at various distances (1 m, 5 m and 10 m). Correlations between the image contrast values and the telepresence scores were analyzed. RESULTS: Subjective telepresence was not significantly different between the two groups. Some significant correlations of brain activities with the telepresence scores were found in the left postcentral gyrus, bilateral inferior frontal gyri, right fusiform gyrus, and left superior temporal sulcus. There were no main effects of group and distance. CONCLUSION: These results suggest that patients with schizophrenia experience telepresence as appropriately as healthy people do when exposed to multimedia. Therefore, patients with schizophrenia would have no difficulty in immersing themselves in multimedia which may be used in clinical training therapies.
Brain
;
Humans
;
Hypogonadism
;
Magnetic Resonance Imaging
;
Mitochondrial Diseases
;
Multimedia
;
Ophthalmoplegia
;
Schizophrenia
;
Telemedicine
;
Videoconferencing
6.Understanding of Neuroimaging and Its Perspectives in Mental Illnesses.
Jae Jin KIM ; Kiwan HAN ; Jung Suk LEE ; Soo Hee CHOI
Journal of the Korean Society of Biological Psychiatry 2011;18(1):5-14
Neuroimaging in psychiatry encompasses the powerful tools available for the in vivo study of brain structure and function. MRI including the volumetry, voxel-base morphometry(VBM) and diffusion tensor imaging (DTI) are useful for assessing brain structure, whereas function MRI, positron emission tomography(PET) and magnetoencephalography(MEG) are well established for probing brain function. These tools are well tolerated by the vast majority of psychiatric patients because they provide a powerful but noninvasive means to directly evaluate the brain. Although neuroimaging technology is currently used only to rule in or rule out general medical conditions as opposed to diagnosing primary mental disorders, it may be used to confirm or make psychiatric diagnoses in the future. In addition, neuroimaging may be valuable for predicting the natural course of psychiatric illness as well as treatment response.
Brain
;
Diffusion Tensor Imaging
;
Electrons
;
Humans
;
Mental Disorders
;
Neuroimaging
7.Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.
Seung Jun KIM ; Sung Eun KIM ; Hyo Eun KIM ; Kiwan HAN ; Bumseok JEONG ; Jae Jin KIM ; Kee NAMKOONG ; Ji Woong KIM
Yonsei Medical Journal 2017;58(5):1061-1065
Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation.
Empathy
;
Functional Neuroimaging
;
Gyrus Cinguli
;
Magnetic Resonance Imaging
;
Memory
;
Prefrontal Cortex
8.Casein kinase 2 is a critical determinant of the balance of Th17 and Treg cell differentiation.
Sung Woong JANG ; Soo Seok HWANG ; Hyeong Su KIM ; Keoung Oh LEE ; Min Kyung KIM ; Wonyong LEE ; Kiwan KIM ; Gap Ryol LEE
Experimental & Molecular Medicine 2017;49(9):e375-
Th17 cells promote inflammatory reactions, whereas regulatory T (Treg) cells inhibit them. Thus, the Th17/Treg cell balance is critically important in inflammatory diseases. However, the molecular mechanisms underlying this balance are unclear. Here, we demonstrate that casein kinase 2 (CK2) is a critical determinant of the Th17/Treg cell balance. Both the inhibition of CK2 with a specific pharmacological inhibitor, CX-4945, and its small hairpin RNA (shRNA)-mediated knockdown suppressed Th17 cell differentiation but reciprocally induced Treg cell differentiation in vitro. Moreover, CX-4945 ameliorated the symptoms of experimental autoimmune encephalomyelitis and reduced Th17 cell infiltration into the central nervous system. Mechanistically, CX-4945 inhibited the IL-6/STAT3 and Akt/mTOR signaling pathways. Thus, CK2 has a crucial role in regulating the Th17/Treg balance.
Casein Kinase II*
;
Casein Kinases*
;
Caseins*
;
Central Nervous System
;
Encephalomyelitis, Autoimmune, Experimental
;
In Vitro Techniques
;
RNA, Small Interfering
;
T-Lymphocytes, Regulatory*
;
Th17 Cells
9.Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs
Hyoung Suk PARK ; Kiwan JEON ; Yeon Jin CHO ; Se Woo KIM ; Seul Bi LEE ; Gayoung CHOI ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Woo Sun KIM ; Young Jin RYU ; Jae-Yeon HWANG
Korean Journal of Radiology 2021;22(4):612-623
Objective:
To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods:
Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience.
Results:
The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618– 0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion
The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.
10.Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs
Hyoung Suk PARK ; Kiwan JEON ; Yeon Jin CHO ; Se Woo KIM ; Seul Bi LEE ; Gayoung CHOI ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Woo Sun KIM ; Young Jin RYU ; Jae-Yeon HWANG
Korean Journal of Radiology 2021;22(4):612-623
Objective:
To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods:
Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience.
Results:
The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618– 0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion
The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.