1.KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B.
Yan LIU ; Xin TIAN ; Pingyang KE ; Juan GU ; Yuanlin MA ; Yi GUO ; Xin XU ; Yuanyuan CHEN ; Min YANG ; Xuefeng WANG ; Fei XIAO
Neuroscience Bulletin 2022;38(8):841-856
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Animals
;
Epilepsy/metabolism*
;
Kinesins/metabolism*
;
Mice
;
Neurons/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Seizures/metabolism*
2.RGS12 represses oral squamous cell carcinoma by driving M1 polarization of tumor-associated macrophages via controlling ciliary MYCBP2/KIF2A signaling.
Gongsheng YUAN ; Shuting YANG ; Shuying YANG
International Journal of Oral Science 2023;15(1):11-11
Tumor-associated macrophages (TAMs) play crucial roles in tumor progression and immune responses. However, mechanisms of driving TAMs to antitumor function remain unknown. Here, transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12 (RGS12) regulates pathologic processes and immune-related pathways. Mice with RGS12 knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues, and extensive proliferation and invasion of oral cancer cells. RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length. Mechanistically, RGS12 associates with and activates MYC binding protein 2 (MYCBP2) to degrade the cilia protein kinesin family member 2A (KIF2A) in TAMs. Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.
Mice
;
Humans
;
Animals
;
Tumor-Associated Macrophages/metabolism*
;
Carcinoma, Squamous Cell
;
Squamous Cell Carcinoma of Head and Neck
;
Mouth Neoplasms
;
GTP-Binding Proteins/metabolism*
;
Head and Neck Neoplasms
;
Ubiquitin-Protein Ligases/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
RGS Proteins/metabolism*
;
Kinesins/metabolism*
;
Repressor Proteins/metabolism*
3.KIF2C: a novel link between Wnt/β-catenin and mTORC1 signaling in the pathogenesis of hepatocellular carcinoma.
Shi WEI ; Miaomiao DAI ; Chi ZHANG ; Kai TENG ; Fengwei WANG ; Hongbo LI ; Weipeng SUN ; Zihao FENG ; Tiebang KANG ; Xinyuan GUAN ; Ruihua XU ; Muyan CAI ; Dan XIE
Protein & Cell 2021;12(10):788-809
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.
Adult
;
Aged
;
Animals
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Epithelial-Mesenchymal Transition/genetics*
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Kinesins/metabolism*
;
Liver Neoplasms/pathology*
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Middle Aged
;
Neoplasm Staging
;
Prognosis
;
Protein Binding
;
RNA, Small Interfering/metabolism*
;
Survival Analysis
;
Tumor Burden
;
Wnt Signaling Pathway
;
Xenograft Model Antitumor Assays
;
beta Catenin/metabolism*