1.Fatal Nocturnal Stridor after Tracheostomy Decannulation in a Patient with Medullary Infarction and Vocal Cord Palsy
Dong-Heon KIM ; Han-Gyu LEE ; Kihoon SHIN ; Ki-Hwan JI
Journal of the Korean Neurological Association 2024;42(4):344-347
Nocturnal stridor, a high-pitched breathing sound during sleep, is one of the respiratory signs indicating airway narrowing. A 70-year-old man experienced life-threatening nocturnal stridor following tracheostomy decannulation after medullary infarction and vocal cord paralysis. This rare case highlights the importance of evaluating risk of sleep apnea and vocal cord function pre-decannulation to prevent serious complications.
2.Fatal Nocturnal Stridor after Tracheostomy Decannulation in a Patient with Medullary Infarction and Vocal Cord Palsy
Dong-Heon KIM ; Han-Gyu LEE ; Kihoon SHIN ; Ki-Hwan JI
Journal of the Korean Neurological Association 2024;42(4):344-347
Nocturnal stridor, a high-pitched breathing sound during sleep, is one of the respiratory signs indicating airway narrowing. A 70-year-old man experienced life-threatening nocturnal stridor following tracheostomy decannulation after medullary infarction and vocal cord paralysis. This rare case highlights the importance of evaluating risk of sleep apnea and vocal cord function pre-decannulation to prevent serious complications.
3.Fatal Nocturnal Stridor after Tracheostomy Decannulation in a Patient with Medullary Infarction and Vocal Cord Palsy
Dong-Heon KIM ; Han-Gyu LEE ; Kihoon SHIN ; Ki-Hwan JI
Journal of the Korean Neurological Association 2024;42(4):344-347
Nocturnal stridor, a high-pitched breathing sound during sleep, is one of the respiratory signs indicating airway narrowing. A 70-year-old man experienced life-threatening nocturnal stridor following tracheostomy decannulation after medullary infarction and vocal cord paralysis. This rare case highlights the importance of evaluating risk of sleep apnea and vocal cord function pre-decannulation to prevent serious complications.
4.Development of bronchiolitis obliterans organizing pneumonia during standard treatment of hepatitis C with Peg-IFNα2b.
Eun CHUNG ; Kihoon PARK ; Jo Heon KIM ; Nam Ik HAN ; Young Sok LEE ; Si Hyun BAE ; Chung Hwa PARK
The Korean Journal of Internal Medicine 2017;32(6):1098-1100
No abstract available.
Bronchiolitis Obliterans*
;
Bronchiolitis*
;
Cryptogenic Organizing Pneumonia*
;
Hepatitis C*
;
Hepatitis*
5.Bipolar Disorder Associated microRNA, miR-1908-5p, Regulates the Expression of Genes Functioning in Neuronal Glutamatergic Synapses.
Yoonhee KIM ; Yinhua ZHANG ; Kaifang PANG ; Hyojin KANG ; Heejoo PARK ; Yeunkum LEE ; Bokyoung LEE ; Heon Jeong LEE ; Won Ki KIM ; Dongho GEUM ; Kihoon HAN
Experimental Neurobiology 2016;25(6):296-306
Bipolar disorder (BD), characterized by recurrent mood swings between depression and mania, is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably, some of the proteins expressed from BD-associated genes function in neuronal synapses, suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast, however, the role of BD-associated miRNAs in disease pathogenesis remains largely unknown, mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem, in this study, we focused on a recently identified BD-associated but uncharacterized miRNA, miR-1908-5p. We identified and validated its novel target genes including DLGAP4, GRIN1, STX1A, CLSTN1 and GRM4, which all function in neuronal glutamatergic synapses. Moreover, bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments, the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast, it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together, our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs.
Bipolar Disorder*
;
Brain
;
Computational Biology
;
Depression
;
Fibroblasts
;
Humans
;
Lithium
;
MicroRNAs*
;
Molecular Biology
;
Neurons*
;
RNA, Messenger
;
Stem Cells
;
Synapses*
;
Valproic Acid
6.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
7.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
8.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
9.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
10.Aromadendrin Inhibits Lipopolysaccharide-Induced Inflammation in BEAS-2B Cells and Lungs of Mice
Juhyun LEE ; Ji-Won PARK ; Jinseon CHOI ; Seok Han YUN ; Bong Hyo RHEE ; Hyeon Jeong JEONG ; Hyueyun KIM ; Kihoon LEE ; Kyung-Seop AHN ; Hye-Gwang JEONG ; Jae-Won LEE
Biomolecules & Therapeutics 2024;32(5):546-555
Aromadendrin is a phenolic compound with various biological effects such as anti-inflammatory properties. However, its protective effects against acute lung injury (ALI) remain unclear. Therefore, this study aimed to explore the ameliorative effects of aromadendrin in an experimental model of lipopolysaccharide (LPS)-induced ALI. In vitro analysis revealed a notable increase in the levels of cytokine/chemokine formation, nuclear factor kappa B (NF-κB) activation, and myeloid differentiation primary response 88 (MyD88)/toll-like receptor (TLR4) expression in LPS-stimulated BEAS-2B lung epithelial cell lines that was ameliorated by aromadendrin pretreatment. In LPS-induced ALI mice, the remarkable upregulation of immune cells and IL-1β/IL-6/TNF-α levels in the bronchoalveolar lavage fluid and inducible nitric oxide synthase/cyclooxygenase-2/CD68 expression in lung was decreased by the oral administration of aromadendrin. Histological analysis revealed the presence of cells in the lungs of ALI mice, which was alleviated by aromadendrin. In addition, aromadendrin ameliorated lung edema. This in vivo effect of aromadendrin was accompanied by its inhibitory effect on LPS-induced NF-κB activation, MyD88/TLR4 expression, and signal transducer and activator of transcription 3 activation. Furthermore, aromadendrin increased the expression of heme oxygenase-1/ NAD(P)H quinone dehydrogenase 1 in the lungs of ALI mice. In summary, the in vitro and in vivo studies demonstrated that aromadendrin ameliorated endotoxin-induced pulmonary inflammation by suppressing cytokine formation and NF-κB activation, suggesting that aromadendrin could be a useful adjuvant in the treatment of ALI.