1.Gentamicin Induced Apoptosis of Renal Tubular Epithelial (LLC-PK1) Cells.
Kyu Hun CHOI ; Tae Il KIM ; Deug Lim CHONG ; Ho Yung LEE ; Dae Suk HAN
The Korean Journal of Internal Medicine 2000;15(3):218-223
Nephrotoxicity is a major limiting factor in the use of aminoglycoside antibiotics, the mechanisms for which are still speculative. To clarify the mechanisms of renal tubular cell death induced by aminoglycosides, we examined the renal proximal tubule-like cell line, LLC-PK1, after inducing apoptosis through a chronic treatment with gentamicin (GM). Changes in the expression of the Fas were also investigated. On flow cytometric analysis, 5.7 +/- 3.3% of the control cells appeared in a region of decreased forward light scatter and increased side light scatter, where both indices represent the characteristics of apoptotic cell death. Compared to the control, treatment with 10 mM of GM for 15 days significantly increased the proportion of cells in the apoptotic region to 23.9 +/- 8.5%. This finding was supported by electrophoretic analysis of the DNA extracted from the GM-treated cells, where a series of bands corresponding to integer multiples of 180 to 200 base pairs was visualized. However, the 15-day GM treatment did not cause a significant elevation in the expression of the 45 kD Fas protein, the cell surface molecule that stimulates apoptosis, by Western blot analysis. In conclusion, long-term exposure to GM induces apoptosis of the renal tubular epithelial cells, and this process may contribute to some of the aminoglycoside nephrotoxicities. Further studies are needed on the mechanism(s) of apoptosis induced by GM.
Animal
;
Antibiotics, Aminoglycoside/toxicity*
;
Antigens, CD95/analysis
;
Apoptosis/drug effects*
;
Cell Line
;
Gentamicins/toxicity*
;
Kidney Tubules, Proximal/pathology
;
Kidney Tubules, Proximal/drug effects*
;
Swine
2.Dexamethasone enhances phospholipase D activity in M-1 cells.
Won Jin KIM ; Min Jung LEE ; Myung Ae PARK ; Jin Sup JUNG ; David J UHLINGER ; Jong Young KWAK
Experimental & Molecular Medicine 2000;32(3):170-177
Phospholipase D (PLD) is an enzyme involved in signal transduction and widely distributed in mammalian cells. The signal transduction pathways and role for phospholipid metabolism during hormonal response in cortical collecting duct remain partly undefined. It has been reported that dexamethasone increases transepithelial transport in M-1 cells that are derived from the mouse cortical collecting duct. We investigated the expression and activity of PLD in M-1 cells. Basal PLD activity of M-1 cells cultured in the presence of dexamethasone (5 microM) was higher than in the absence of dexamethasone. Dexamethasone and ATP activated PLD in M-1 cells but phorbol ester did not stimulate PLD activity. Vasopressin, bradykinin, dibutyryl cyclic AMP, and ionomycin were ineffective in activating PLD of the cells. The PLD2 isotype was detected by immunoprecipitation but PLD1 was not detected in M-1 cells. Addition of GTPgammaS and ADP-ribosylation factor or phosphatidylinositiol 4,5-bisphosphate to digitonin-permeabilized cells did not augment PLD activity. In intact cells PLD activity was increased by sodium oleate but there was no significant change between dexamethasone treated- and untreated cells by oleate. These results suggest that at least two types of PLD are present in M-1 cells and PLD plays a role in the corticosteroid-mediated response of cortical collecting duct cells.
Animal
;
Biological Transport/drug effects
;
Dexamethasone/pharmacology*
;
Dose-Response Relationship, Drug
;
Drug Interactions
;
Glycerophospholipids/analysis
;
Isoenzymes/drug effects
;
Kidney Cortex/cytology
;
Kidney Tubules, Collecting/drug effects*
;
Kidney Tubules, Collecting/cytology
;
Mice
;
Mice, Transgenic
;
Oleic Acid/pharmacology
;
Phospholipase D/drug effects*
4.Changes of renal cortex lipid peroxidation in renal injury induced by cisplatin in rats.
Li WANG ; Rui PEI ; Hong-Mei YANG ; Jie CHEN ; Xing-Fen GUI
Chinese Journal of Applied Physiology 2004;20(4):393-395
AIMTo study the relativity of the renocortical lipid peroxidation with renal tubules structure damage in renal injury induced by cisplatin in rats.
METHODSFemale Wistar rats were randomly divided into NS group, CDDP(I) group, CDDP(II) group and CDDP(III) group. All rats were injected via the tail vein with NS or cisplatin and NS qd in five days. The changes in content of Scr, BUN and MDA, the activity of SOD and GSH-Px of the renal cortex were measured. Alkaline phosphatase of renal tubular epithelia was stained by histochemistry and the slices of renal cortex were observed.
RESULTSThe contents of Scr and BUN of CDDP groups were significantly higher than those of NS group (P < 0.01). The content of renocortical MDA was significantly higher than that of NS group (P < 0.05). The activities of renoconical SOD and GSH-Px were lower than those of NS group (P < 0.05). The content of MDA, activities of renocortical SOD and GSH-Px with the content of Scr and BUN were significantly correlative. Alkaline phosphatase of renal tubular epithelia cells was losed largely and renal tubular epithelia cells were denaturative and necrotic partly in sections.
CONCLUSIONThe damage of renal cortex was correlative with its lipid peroxidation. The injury of renal cortex became heavier with cisplatin dose increased.
Animals ; Cisplatin ; adverse effects ; Female ; Kidney Cortex ; drug effects ; physiopathology ; Kidney Tubules ; pathology ; Lipid Peroxidation ; Rats ; Rats, Wistar
5.Regulative mechanisms of tubular epithelial to mesenchymal transition and interventional effects of Chinese herbal medicine.
Xue-Jiao YIN ; Wei SUN ; Yi-Gang WAN ; Yue TU ; Hong LIU ; Bing-Yin YU
China Journal of Chinese Materia Medica 2013;38(5):648-652
Epithelial to mesenchymal transition (EMT) has been proposed as a key role leading to the progressive tubulo-interstitial fibrosis (TIF). The tubular EMT is an highly regulated process involving four key steps including: loss of epithelial cell adhesion, de novo smooth muscle actin expression and actin reorganization, disruption of tubular basement membrane,and enhanced cell migration and invasion. These crucial processes are closely connected to the relative actions on many signaling pathways in EMT. Additionally, increasing evidences suggest that some Chinese herbal medicines and their extracts, such as Astragali Radix, Cordyceps, Salvia miltiorrhiza, as well as Chinese. herbal prescriptions including Astragalus Angelica mixture and Supplementing Qi and activating blood circulation decoction, could intervene the related events controlling EMT both in vitro and in vivo. Chinese herbal medicines could ameliorate TIF by intervening the course of EMT.
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Kidney Tubules
;
cytology
;
drug effects
;
metabolism
;
Signal Transduction
;
drug effects
6.Influence of ethylbenzene on oxidative damage and apoptosis in rat renal epithelial cells NRK-52e.
Xiao-ting LIU ; De-yi YANG ; Yan-rang WANG ; Qian WANG ; Dan KUANG ; Ming ZHANG ; Li-jie QIAO ; Jian-guo LI ; Xue-ying YANG ; Shu-lan ZHAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(2):133-136
OBJECTIVETo study the oxidative damage and apoptosis of renal tubular epithelial cells (NRK-52e cell line) induced by ethylbenzene.
METHODSNRK-52e cells were exposed to 30, 60, 90, 120 μmol/L ethylbenzene for 24 hours. Cell viability were measured using MTT, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), the contents of malondialdehyde (MDA) and glutathione (GSH) were detected respectively. PI fluorescent staining assay was applied to detect percentage of apoptosis in ethylbenzene-treated groups.
RESULTSCompared with control group, cell outline became clear, cell diopter increased, cell became smaller and shrinkage, some cells broke in 60 μmol/L ethylbenzene-treated group. Plenty of cells died, suspension cells increased significantly in 90 μmol/L ethylbenzene-treated group. Compared with control group, cell viability the activities of SOD and CAT and the content of GSH were significantly decreased in 60 and 90 μmol/L ethylbenzene-treated groups (P<0.05). The MDA content were remarkably elevated in 90 μmol/L ethylbenzene-treated groups (P<0.05).
CONCLUSIONEthylbenzene can induce oxidative stress and apoptosis in NRK-52e cells (P<0.05).
Animals ; Apoptosis ; drug effects ; Benzene Derivatives ; toxicity ; Cell Line ; Epithelial Cells ; drug effects ; metabolism ; Kidney Tubules ; cytology ; Oxidation-Reduction ; Oxidative Stress ; drug effects ; Rats ; Reactive Oxygen Species ; metabolism
7.Study of resveratrol suppressing TGF-beta1 induced transdifferentiation of podocytes.
Ru-Chun YANG ; Xiao-Ling ZHU ; Hua-Qin ZHANG ; Wei-Dong LI
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(12):1677-1682
OBJECTIVETo explore the effect of resveratrol on transforming growth factor-beta1 (TGF-beta1) induced transdifferentiation of podocytes.
METHODSMouse podocytes in vitro cultured under differentiating conditions for 10 days were divided into the normal group, the model group, the high dose resveratrol group, and the low dose resveratrol group. The podocytes in the high and low dose resveratrol groups were intervened with 5 micromol/L and 2 micromol/L resveratrol respectively for 30 min. Those in the model group and the two resveratrol treated groups were continually incubated with 5 ng/mL TGF-beta1 for 72 h. Those in the normal group were routinely cultured. The protein expression of podocyte phenotypic protein molecules such as E-cadherin, P-cadherin, zonula occludens-1 (ZO-1), NEPH1, and alpha-smooth muscle-actin (alpha-SMA) were detected by immunocytochemistry, flow cytometry (FCM), and Western blot. A simple albumin influx assay was used to evaluate the filtration barrier function of podocyte monolayer.
RESULTSCompared with the normal control group, E-cadherin (+) percentage rate, the protein expression of P-cadherin, ZO-1, and NEPH1 significantly decreased in the model group (P < 0.05), but the expression of alpha-SMA and albumin permeability across podocyte monolayers increased significantly (P < 0.05). Compared with the model group, E-cadherin (+) percentage rate significantly increased (P < 0.05) and albumin permeability across podocyte monolayers decreased significantly (P < 0.05) in the high and low dose resveratrol groups. In the low dose resveratrol group, the expression of P-cadherin and NEPH1 significantly increased (P < 0.05). In the high dose resveratrol group, the expression of P-cadherin, ZO-1, and NEPH1 increased significantly, and the expression of alpha-SMA decreased significantly (P < 0.05). The correlations between resveratrol concentrations and the expression of E-cadherin (+), P-cadherin, and NEPH1 were significantly positive (r(E-cadherin (+)) = 0.772, r(P-cadherin) = 0.756, r(NEPH1) = 0.809, P < 0.05).
CONCLUSIONThe role of resveratrol in inhibiting TGF-beta1 induced phenotype abnormality might be an important mechanism for preserving the integrality of glomerular filtration barrier and decreasing proteinuria.
Animals ; Cell Transdifferentiation ; drug effects ; Cells, Cultured ; Kidney Tubules ; cytology ; drug effects ; Mice ; Podocytes ; cytology ; drug effects ; Stilbenes ; pharmacology ; Transforming Growth Factor beta1 ; metabolism
8.The toxic effects of lead acetate on the apoptosis and the ultrastructure in human renal tubular epithelial cells (HK-2).
Qing-Hua JIA ; Xiao-Qin HA ; Xiao-Peng YANG ; Ye-Wei CHANG ; Zhi-Hua YANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2011;29(9):674-677
OBJECTIVETo explore the toxic effects of lead acetate on the apoptosis and ultrastructure of human renal tubular epithelial cells (HK-2).
METHODSAfter HK-2 cells were exposed to 5, 10 and 20 µmol/L lead acetate for 24 h, the morphological changes of HK-2 cells were observed by Hochest 33342-PI staining, and the ultrastructure changes of HK-2 cells were examined under a electron microscope, LDH activity and MDA content in supernatant of HK-2 cellular culture were detected by spectrophotometer, DNA damage of HK-2 was determined by DNA ladder and the apoptotic rates of HK-2 cells were measured by flow cytometry.
RESULTSThe morphological changes of apoptotic HK-2 cells in exposure group were observed by Hochest 33342-PI staining. The cytoplasm vacuoles, karyopycnosis, nuclear membrane vague and apoptotic bodies in HK-2 cells of exposure group were found under electron microscopy. LDH activity and MDA contents in exposure group increased significantly, as compared to control group (P < 0.01). The results of DNA Ladder showed that DNA damage of HK-2 cells in exposure group appeared. The apoptotic rates of HK-2 cells exposed to 5, 10, 20 µmol/L lead acetate were 14.16% ± 2.94%, 19.45% ± 2.73%, 25.01% ± 3.97%, respectively, which were significantly higher than that (5.81% ± 2.18%) in control group (P < 0.05).
CONCLUSIONLead acetate could remarkably induce the apoptosis of HK-2 cells and affect the kidney.
Apoptosis ; drug effects ; Cell Line ; Epithelial Cells ; cytology ; drug effects ; ultrastructure ; Humans ; Kidney Tubules, Proximal ; cytology ; drug effects ; ultrastructure ; Organometallic Compounds ; toxicity
9.Administration of adrenomedullin into subfornical organ inhibits Na(+),K(+)-ATPase activity in single proximal renal tubule of rats.
Acta Physiologica Sinica 2009;61(1):94-98
The present study was designed to investigate the effect of administration of adrenomedullin (ADM) into subfornical organ (SFO) on renal tubular Na(+),K(+)-ATPase activity in rats. Rats under anesthesia were injected with ADM 0.1 mL (20 ng/mL) via an implanted cannula into SFO (n=6). Plasma ADM and serum endogenous digitalis-like factor (EDLF) levels were assayed with radioimmunoassay, and urine samples were collected via a canoula intubated in bladder. Urinary sodium concentration was assayed with flame spectrophotometry. Single proximal renal tubule segments were obtained by hand under stereomicroscope and its Na(+),K(+)-ATPase activity was measured by liquid scintillation counting. In addition, single proximal renal tubule segments from normal rats (n=6) were incubated with serum from animals administered with ADM into SFO, and then the Na(+),K(+)-ATPase activity was determined. The results showed that both urinary volume and sodium excretion amounted to the peak value at 30 min after ADM administration, and sustained a significant high level at 60 min (P<0.01). At 30 min after ADM administration, there was a significant increase in serum EDLF and a decrease in Na(+),K(+)-ATPase activity of proximal tubule (P<0.01, respectively), but not in plasma ADM level. Na(+),K(+)-ATPase activity was decreased significantly in single proximal renal tubule segments from normal rats incubated with serum from rats administered with ADM into SFO (P<0.01). These results suggest that the diuretic and natriuretic responses following administration of ADM into SFO are associated with the inhibition of renal tubule Na(+),K(+)-ATPase activity. The inhibition of renal tubule Na(+),K(+)-ATPase activity is related to the increase in the serum level of EDLF.
Adrenomedullin
;
pharmacology
;
Animals
;
Kidney Tubules, Proximal
;
drug effects
;
enzymology
;
Rats
;
Sodium-Potassium-Exchanging ATPase
;
metabolism
;
Subfornical Organ
10.High levels of glucose induce epithelial-mesenchymal transition in renal proximal tubular cells through PERK-eIF2α pathway.
Yan BAO ; Ying AO ; Bo YI ; Jo BATUBAYIER
Chinese Medical Journal 2019;132(7):868-872
Animals
;
Cell Line
;
Diabetic Nephropathies
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Eukaryotic Initiation Factor-2
;
metabolism
;
Glucose
;
pharmacology
;
Humans
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Kidney Tubules, Proximal
;
drug effects
;
metabolism
;
Rats
;
Signal Transduction
;
drug effects