1.Changes of calpain in renal tubular epithelial cells during kidney ischemia/reperfusion injury of neonatal rats.
Bo YU ; Yu-jia YAO ; Zhen-lang LIN
Chinese Journal of Pediatrics 2005;43(10):789-791
Animals
;
Calpain
;
metabolism
;
Epithelial Cells
;
metabolism
;
Kidney
;
cytology
;
Kidney Tubules
;
cytology
;
metabolism
;
Rats
;
Reperfusion Injury
;
metabolism
2.Expression of PKD1 and PKD2 transcripts and proteins and its significance in different types of kidney tissues and kidney lines.
Hai-dan ZHAO ; Cheng-gang XU ; Chang-lin MEI ; Tian-mei SUN ; Yu-Mei WU ; Xue-Fei SHEN ; Wen-jing WANG ; Lin LI
Chinese Journal of Pathology 2005;34(10):646-649
OBJECTIVETo investigate the expression and function of PKD1 and PKD2 in different kidney tissues and cell lines.
METHODSImmunoprecipitation, Western blotting, In situ hybridization and immunohistochemical staining methods were used to observe the expression of PKD1 mRNA and PKD2 mRNA and their protein abundance in different kidney tissues and cell lines.
RESULTSCoordinate expressions of PKD1 and PKD2 were found in all kidney tissues and cell lines. Distribution of PKD1 mRNA and PKD2 mRNA and their protein polycystin-1 and polycystin-2 in normal human adult kidney tissue were mainly expressed in the medullary collecting ducts and distal tubules. Positive staining was also found in the majority of cyst-lining epithelial cells of PKD1 cystic kidney tissue, PKD1 cyst-lining epithelia cell line and LLC-PK1. The expression level of them in cystic epithelia of ADPKD kidney tissue was much higher than that in adult renal tubules (P < 0.01).
CONCLUSIONSSimilar expression pattern of PKD1 and PKD2 and their different tissue distribution in different kidney tissues show that the molecular mutuality of PC-1 and PC-2 might be the base of their functional correlation. Polycystins might play an important role in the maintenance of tubular architecture.
Adult ; Animals ; Cell Line ; Gene Expression ; Humans ; Kidney ; metabolism ; Kidney Tubules, Collecting ; metabolism ; Kidney Tubules, Distal ; metabolism ; Kidney Tubules, Proximal ; cytology ; Polycystic Kidney, Autosomal Dominant ; pathology ; RNA, Messenger ; biosynthesis ; genetics ; Swine ; TRPP Cation Channels ; metabolism
3.Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of beta-catenin into human renal tubular epithelial cells.
Rui, ZENG ; Gang, XU ; Min, HAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(6):630-4
Phosphorylation of beta-catenin tyrosine residue 654 plays an important role in the epithelial to myofibroblast transition (EMT). Introducing mimic peptide of tyrosine residue 654 domain of beta-catenin into cells may influence phosphorylation of beta-catenin tyrosine residue 654. To deliver this mimic peptide into renal epithelial cells, we used penetratin as a vector, which is a novel cell permeable peptide, to deliver hydrophilic molecules into cells. A tyrosine 654 residue domain mimic peptide of beta-catenin (PM) with fused penetratin was constructed, purified and then detected for the penetration of the mimic peptide into human renal tubular epithelial cells (HK-2). The results showed that purified fusion mimic peptide could efficiently and rapidly translocate into human renal tubular epithelial cells. It is concluded that a cell-permeable peptides mimic of tyrosine residue 654 domain of beta-catenin was successfully obtained, which may provide a useful reagent for interfering the human renal tubular epithelial-mesenchymal transition.
Carrier Proteins/*metabolism
;
Epithelial Cells/cytology
;
Epithelial Cells/*metabolism
;
Fibroblasts/cytology
;
Fibroblasts/metabolism
;
Kidney Tubules/*cytology
;
Peptides/metabolism
;
Permeability
;
Phosphorylation
;
Tyrosine/*metabolism
;
beta Catenin/*metabolism
4.Immunolocalization of anion exchanger 1 (Band 3) in the renal collecting duct of the common marmoset.
Ji Hyun SONG ; Yong Hwan KIM ; Tae Cheon KANG ; Moo Ho WON ; Jun Gyo SUH ; Byung Hwa HYUN ; Yang Seok OH ; Si Yun RYU ; Ju Young JUNG
Journal of Veterinary Science 2007;8(4):329-333
The purpose of this study was to determine the expression and distribution of band 3 in the collecting duct and connecting tubules of the kidney of the marmoset monkey (Callithrix jacchus), and to establish whether band 3 is expressed in type A intercalated cells. The intracellular localization of band 3 in the different populations of intercalated cells was determined by double-labeling immunohistochemistry. Immunohistochemical microscopy demonstrated that band 3 is located in the basolateral plasma membranes of all type A intercalated cells in the connecting tubule (CNT), cortical collecting duct (CCD), and outer medullary collecting duct (OMCD) of the marmoset. However, type B intercalated cells and non-A/ non-B intercalated cells did not show band 3 labeling. Electron microscopy of the CNT, CCD and OMCD confirmed the light microscopic observation of the basolateral plasma membrane staining for band 3 in a subpopulation of interacted cells. Basolateral staining was seen on the plasma membrane and small coated vesicles in the perinuclear structure, some of which were located in the Golgi region. In addition, there was no labeling of band 3 in the mitochondria of the CNT, CCD and in OMCD cells. The intensity of the immunostaining of the basolateral membrane was less in the CNT than in the CCD and OMCD. In contrast, band 3 immunoreactivity was greater in the intracellular vesicles of the CNT. From these results, we suggest that the basolateral Cl-/HCO3- exchanger in the monkey kidney is in a more active state in the collecting duct than in the CNT.
Animals
;
Anion Exchange Protein 1, Erythrocyte/*metabolism
;
Callithrix/*metabolism
;
Gene Expression Profiling/veterinary
;
*Gene Expression Regulation
;
Immunohistochemistry/veterinary
;
Kidney Tubules/cytology/physiology/ultrastructure
;
Kidney Tubules, Collecting/cytology/*metabolism/ultrastructure
;
Male
;
Microscopy, Electron, Transmission/veterinary
5.Relationship between the catalysis of Bence Jones protein and renal impairment in patients with multiple myeloma.
Xiao ZHOU ; Yong-Ping ZHAI ; Jian-Gang MEI ; Zhi-Ming AN ; Xiao-Gang ZHOU ; Ping SHI ; Ya-Ping YU ; Hai-Ning LIU ; Ping SONG
Journal of Experimental Hematology 2012;20(2):339-343
This study was purposed to investigate the relationship between the catalysis of Bence Jones protein (BJP) in urine of patients with multiple myeloma(MM) and toxicity on the renal proximal tubular cells in vitro, and to explore the potential mechanism for the toxicity of BJP to renal impairment in patients with MM. The Michaelis-Menten constant (K(m)) and catalytic constant (k(cat)) of the amidase activity of BJP was calculated by Hanes equation. The LLC-PK1 cells were cultured with different concentration of BJP for 24 h, then proliferation of the cells were determined by MTT method and apoptosis were determined by flow cytometry. The results showed that the BJP from the MM patients with renal impairment significantly inhibited cell proliferation, as compared with that from MM patients without renal impairment. The BJP with higher k(cat) had higher toxicity to LLC-PK1 cells. BJP could induce apoptosis and necrosis of LLC-PK1 cells when reached a certain concentration and this effect enhanced with increase of BJP concentration. It is concluded that the catalysis of BJP and its toxicity to renal tubular epithelial cells has a positive correlation, and toxic effect of BJP on renal tubular epithelial cells results from inhibiting proliferation and inducing apoptosis and necrosis of the cells, which may be one of renal impairment mechanisms in MM patients.
Animals
;
Bence Jones Protein
;
metabolism
;
toxicity
;
Catalysis
;
Coculture Techniques
;
Epithelial Cells
;
metabolism
;
pathology
;
Humans
;
Kidney
;
metabolism
;
pathology
;
Kidney Tubules
;
cytology
;
LLC-PK1 Cells
;
Multiple Myeloma
;
metabolism
;
pathology
;
Swine
6.Heat Shock Protein Expression in Adenosine Triphosphate Depleted Renal Epithelial Cells.
Dong Jin OH ; Suk Hee YU ; Eung Tack KANG
The Korean Journal of Internal Medicine 2004;19(3):149-154
BACKGROUND: In this study, the putative interactions between apoptosis and heat shock proteins disturbed as a result of ATP depletion were investigated as a hypoxia model. METHODS: The direct cellular damages were assessed by the release of LDH from the cytoplasm of the human tubular epithelial cells (HK-2 cells) following ATP depletion. The Bcl-2/Bax mRNA expression ratio, used as an index to assess to what extent apoptosis contributed to tubular cell damage, and the expressions of HSP 90, 72 and 27 in relation to the Bcl-2/Bax ratio in the ischemic model, as parameters of their functional contributions to tubule cell damage, were also studied. Heat preconditioning (HS) was performed at 43 degrees in a temperature-regulated water bath for 1 h. RESULTS: The release of LDH due to ATP depletion was not significantly increased in HK-2 cells compared to the control, but was slightly increased in heat preconditioned cells compared to non heat preconditioned cells, but the difference was not statistically significant (6.33 +/- 0.57 U/L vs. 8.67 +/- 2.52 U/L, p> 0.05). The Bcl-2/ Bax mRNA expression ratio increased progressively from the control to the heat preconditioned and ATP depleted cells (control; 100%, ATP depletion; 154 +/- 6%, heat preconditioning; 212 +/- 6%, heat preconditioning and ATP depletion; 421 +/- 8%). No contribution of heat preconditioning and ATP depletion was observed on the expressions of HSP90 and HSP27. However, HSP72 expression was prominent by ATP depletion, especially after heat preconditioning. CONCLUSION: There may be a possibility that the preservation of cytolytic damage and an increase in the Bcl-2/Bax mRNA expression ratio is related to the increase of HSP72 in ATP depletion as a hypoxia model.
Adenosine Triphosphate/*deficiency
;
Anoxia/metabolism
;
Epithelium/*metabolism
;
Heat-Shock Proteins/*metabolism
;
Humans
;
Kidney Tubules/cytology/*metabolism
;
L-Lactate Dehydrogenase/metabolism
;
RNA, Messenger/metabolism
;
Research Support, Non-U.S. Gov't
7.Progress in renal drug targeting.
Acta Pharmaceutica Sinica 2005;40(3):199-203
8.Mechanisms of decorin inhibiting epithelial-to-mesenchymal transition induced by transforming growth factor beta1 in renal tubular epithelial cells.
Jin-ya WANG ; Hua-ying BAO ; Song-ming HUANG ; Ai-hua ZHANG ; Xiao-qin PAN ; Li FEI ; Rong-hua CHEN
Chinese Journal of Pediatrics 2010;48(1):50-54
OBJECTIVETo investigate the mechanisms of decorin inhibiting epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor beta1 (TGF-beta1) in renal tubular epithelial cells.
METHODHK-2 cells in vitro were divided into 4 groups: (1) negative control group; (2) decorin group, added with decorin 100 ng/ml ; (3) TGF-beta1 group, added with TGF-beta1 10 ng/ml; (4) decorin and TGF-beta1 group, added with decorin 100 ng/ml and TGF-beta1 10 ng/ml. The protein level of phosphor-ERK, phosphor-PI3K, phosphor-Smad(3) and beta-catenin was detected by Western blotting method. The snail mRNA level was tested by real time-PCR, while the lymphoid enhancer factor-1 (LEF-1) mRNA level was measured by RT-PCR.
RESULTSThe snail (2.59 +/- 0.70:1.02 +/- 0.13) and LEF-1 mRNA (1.85 +/- 0.08:0.30 +/- 0.11) were significantly up-regulated, meanwhile the protein level of phosphor-ERK (1.11 +/- 0.09:0.47 +/- 0.07), phosphor-PI3K (14.79 +/- 1.02:2.48 +/- 0.06), phosphor-Smad(3) (0.95 +/- 0.02:0.08 +/- 0.01) and beta-catenin (1.46 +/- 0.20:0.49 +/- 0.05) were significantly increased in TGF-beta1 group compared to control group, while there were no statistically significant difference in all figures between control group and decorin group. The phosphor-ERK protein level (0.58 +/- 0.08) and the snail mRNA level (1.24 +/- 0.03) were significantly down-regulated in TGF-beta1 and decorin group compared to TGF-beta1 group, however there were no statistically significant differences in the level of phosphor-PI3K (15.84 +/- 1.64), phosphor-Smad(3) (0.90 +/- 0.04) and beta-catenin (1.42 +/- 0.09) between these two groups.
CONCLUSIONDecorin inhibited EMT induced by TGF-beta1 which may be through blocking the ERK signal transduction pathway.
Cell Dedifferentiation ; drug effects ; Cells, Cultured ; Decorin ; pharmacology ; Epithelial Cells ; cytology ; Fibronectins ; Humans ; Kidney Tubules ; cytology ; pathology ; Proteoglycans ; Transforming Growth Factor beta1 ; metabolism
9.Effect of bone morphogenetic protein-7 on aristolochic acid induced renal tubular epithelial cells transdifferentiation.
Yong-zhi XU ; Hao HUANG ; Hua-feng LIU
Chinese Journal of Integrated Traditional and Western Medicine 2010;30(2):157-160
OBJECTIVETo observe the effect of bone morphogenetic protein-7 (BMP-7) on aristolchic acid induced renal tubular epithelial cell trans-differentiation to look for new therapeutic approach for aristolchic acid nephropathy (AAN).
METHODSIn vitro cultured human proximal renal tubular epithelial cell line HK-2 cells were treated with different concentrations of BMP-7 (75 ng/mL, 150 ng/mL and 300 ng/mL) after trans-differentiation of the cells was induced by AA (10 microg/mL). Levels of alpha-SMA mRNA and protein expressions were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blotting respectively.
RESULTSBMP-7 reversed the AA inducing alpha-SMA expressions in HK-2 cells in a dose-dependent manner.
CONCLUSIONBMP-7 can inhibit the trans-differentiation of human renal tubular epithelial cell induced by AA, thereby might be a new potential drug for AAN prevention and treatment.
Actins ; metabolism ; Aristolochic Acids ; adverse effects ; Bone Morphogenetic Protein 7 ; pharmacology ; Cell Line ; Cell Transdifferentiation ; drug effects ; Epithelial Cells ; cytology ; Humans ; Kidney Tubules, Proximal ; cytology
10.Study of resveratrol suppressing TGF-beta1 induced transdifferentiation of podocytes.
Ru-Chun YANG ; Xiao-Ling ZHU ; Hua-Qin ZHANG ; Wei-Dong LI
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(12):1677-1682
OBJECTIVETo explore the effect of resveratrol on transforming growth factor-beta1 (TGF-beta1) induced transdifferentiation of podocytes.
METHODSMouse podocytes in vitro cultured under differentiating conditions for 10 days were divided into the normal group, the model group, the high dose resveratrol group, and the low dose resveratrol group. The podocytes in the high and low dose resveratrol groups were intervened with 5 micromol/L and 2 micromol/L resveratrol respectively for 30 min. Those in the model group and the two resveratrol treated groups were continually incubated with 5 ng/mL TGF-beta1 for 72 h. Those in the normal group were routinely cultured. The protein expression of podocyte phenotypic protein molecules such as E-cadherin, P-cadherin, zonula occludens-1 (ZO-1), NEPH1, and alpha-smooth muscle-actin (alpha-SMA) were detected by immunocytochemistry, flow cytometry (FCM), and Western blot. A simple albumin influx assay was used to evaluate the filtration barrier function of podocyte monolayer.
RESULTSCompared with the normal control group, E-cadherin (+) percentage rate, the protein expression of P-cadherin, ZO-1, and NEPH1 significantly decreased in the model group (P < 0.05), but the expression of alpha-SMA and albumin permeability across podocyte monolayers increased significantly (P < 0.05). Compared with the model group, E-cadherin (+) percentage rate significantly increased (P < 0.05) and albumin permeability across podocyte monolayers decreased significantly (P < 0.05) in the high and low dose resveratrol groups. In the low dose resveratrol group, the expression of P-cadherin and NEPH1 significantly increased (P < 0.05). In the high dose resveratrol group, the expression of P-cadherin, ZO-1, and NEPH1 increased significantly, and the expression of alpha-SMA decreased significantly (P < 0.05). The correlations between resveratrol concentrations and the expression of E-cadherin (+), P-cadherin, and NEPH1 were significantly positive (r(E-cadherin (+)) = 0.772, r(P-cadherin) = 0.756, r(NEPH1) = 0.809, P < 0.05).
CONCLUSIONThe role of resveratrol in inhibiting TGF-beta1 induced phenotype abnormality might be an important mechanism for preserving the integrality of glomerular filtration barrier and decreasing proteinuria.
Animals ; Cell Transdifferentiation ; drug effects ; Cells, Cultured ; Kidney Tubules ; cytology ; drug effects ; Mice ; Podocytes ; cytology ; drug effects ; Stilbenes ; pharmacology ; Transforming Growth Factor beta1 ; metabolism