1.Dexamethasone enhances phospholipase D activity in M-1 cells.
Won Jin KIM ; Min Jung LEE ; Myung Ae PARK ; Jin Sup JUNG ; David J UHLINGER ; Jong Young KWAK
Experimental & Molecular Medicine 2000;32(3):170-177
Phospholipase D (PLD) is an enzyme involved in signal transduction and widely distributed in mammalian cells. The signal transduction pathways and role for phospholipid metabolism during hormonal response in cortical collecting duct remain partly undefined. It has been reported that dexamethasone increases transepithelial transport in M-1 cells that are derived from the mouse cortical collecting duct. We investigated the expression and activity of PLD in M-1 cells. Basal PLD activity of M-1 cells cultured in the presence of dexamethasone (5 microM) was higher than in the absence of dexamethasone. Dexamethasone and ATP activated PLD in M-1 cells but phorbol ester did not stimulate PLD activity. Vasopressin, bradykinin, dibutyryl cyclic AMP, and ionomycin were ineffective in activating PLD of the cells. The PLD2 isotype was detected by immunoprecipitation but PLD1 was not detected in M-1 cells. Addition of GTPgammaS and ADP-ribosylation factor or phosphatidylinositiol 4,5-bisphosphate to digitonin-permeabilized cells did not augment PLD activity. In intact cells PLD activity was increased by sodium oleate but there was no significant change between dexamethasone treated- and untreated cells by oleate. These results suggest that at least two types of PLD are present in M-1 cells and PLD plays a role in the corticosteroid-mediated response of cortical collecting duct cells.
Animal
;
Biological Transport/drug effects
;
Dexamethasone/pharmacology*
;
Dose-Response Relationship, Drug
;
Drug Interactions
;
Glycerophospholipids/analysis
;
Isoenzymes/drug effects
;
Kidney Cortex/cytology
;
Kidney Tubules, Collecting/drug effects*
;
Kidney Tubules, Collecting/cytology
;
Mice
;
Mice, Transgenic
;
Oleic Acid/pharmacology
;
Phospholipase D/drug effects*
2.Expression of PKD1 and PKD2 transcripts and proteins and its significance in different types of kidney tissues and kidney lines.
Hai-dan ZHAO ; Cheng-gang XU ; Chang-lin MEI ; Tian-mei SUN ; Yu-Mei WU ; Xue-Fei SHEN ; Wen-jing WANG ; Lin LI
Chinese Journal of Pathology 2005;34(10):646-649
OBJECTIVETo investigate the expression and function of PKD1 and PKD2 in different kidney tissues and cell lines.
METHODSImmunoprecipitation, Western blotting, In situ hybridization and immunohistochemical staining methods were used to observe the expression of PKD1 mRNA and PKD2 mRNA and their protein abundance in different kidney tissues and cell lines.
RESULTSCoordinate expressions of PKD1 and PKD2 were found in all kidney tissues and cell lines. Distribution of PKD1 mRNA and PKD2 mRNA and their protein polycystin-1 and polycystin-2 in normal human adult kidney tissue were mainly expressed in the medullary collecting ducts and distal tubules. Positive staining was also found in the majority of cyst-lining epithelial cells of PKD1 cystic kidney tissue, PKD1 cyst-lining epithelia cell line and LLC-PK1. The expression level of them in cystic epithelia of ADPKD kidney tissue was much higher than that in adult renal tubules (P < 0.01).
CONCLUSIONSSimilar expression pattern of PKD1 and PKD2 and their different tissue distribution in different kidney tissues show that the molecular mutuality of PC-1 and PC-2 might be the base of their functional correlation. Polycystins might play an important role in the maintenance of tubular architecture.
Adult ; Animals ; Cell Line ; Gene Expression ; Humans ; Kidney ; metabolism ; Kidney Tubules, Collecting ; metabolism ; Kidney Tubules, Distal ; metabolism ; Kidney Tubules, Proximal ; cytology ; Polycystic Kidney, Autosomal Dominant ; pathology ; RNA, Messenger ; biosynthesis ; genetics ; Swine ; TRPP Cation Channels ; metabolism
3.Immunolocalization of anion exchanger 1 (Band 3) in the renal collecting duct of the common marmoset.
Ji Hyun SONG ; Yong Hwan KIM ; Tae Cheon KANG ; Moo Ho WON ; Jun Gyo SUH ; Byung Hwa HYUN ; Yang Seok OH ; Si Yun RYU ; Ju Young JUNG
Journal of Veterinary Science 2007;8(4):329-333
The purpose of this study was to determine the expression and distribution of band 3 in the collecting duct and connecting tubules of the kidney of the marmoset monkey (Callithrix jacchus), and to establish whether band 3 is expressed in type A intercalated cells. The intracellular localization of band 3 in the different populations of intercalated cells was determined by double-labeling immunohistochemistry. Immunohistochemical microscopy demonstrated that band 3 is located in the basolateral plasma membranes of all type A intercalated cells in the connecting tubule (CNT), cortical collecting duct (CCD), and outer medullary collecting duct (OMCD) of the marmoset. However, type B intercalated cells and non-A/ non-B intercalated cells did not show band 3 labeling. Electron microscopy of the CNT, CCD and OMCD confirmed the light microscopic observation of the basolateral plasma membrane staining for band 3 in a subpopulation of interacted cells. Basolateral staining was seen on the plasma membrane and small coated vesicles in the perinuclear structure, some of which were located in the Golgi region. In addition, there was no labeling of band 3 in the mitochondria of the CNT, CCD and in OMCD cells. The intensity of the immunostaining of the basolateral membrane was less in the CNT than in the CCD and OMCD. In contrast, band 3 immunoreactivity was greater in the intracellular vesicles of the CNT. From these results, we suggest that the basolateral Cl-/HCO3- exchanger in the monkey kidney is in a more active state in the collecting duct than in the CNT.
Animals
;
Anion Exchange Protein 1, Erythrocyte/*metabolism
;
Callithrix/*metabolism
;
Gene Expression Profiling/veterinary
;
*Gene Expression Regulation
;
Immunohistochemistry/veterinary
;
Kidney Tubules/cytology/physiology/ultrastructure
;
Kidney Tubules, Collecting/cytology/*metabolism/ultrastructure
;
Male
;
Microscopy, Electron, Transmission/veterinary