2.Mechanism of transmission and modulation of renal pain in cats: effects of transcutaneous electrical nerve stimulation on renal pain.
Taick Sang NAM ; Eun Joo PAIK ; Yong Un SHIN ; Yong JEONG ; Kwang Se PAIK
Yonsei Medical Journal 1995;36(2):187-201
Transcutaneous electrical nerve stimulation (TENS) has widely been employed as a method of obtaining analgesia in medical practice. The mechanisms of pain relief by TENS are known to be associated with the spinal gate control mechanism or descending pain inhibitory system. However, most of the studies concerning the analgesic effects and their mechanisms for TENS have dealt with somatic pain. Thus, in this experiment, we investigated the analgesic effects of TENS on renal pain as a model of visceral pain, and the characteristics of the dorsal horn cells with renal inputs. The renal pain was induced by acute occlusion of the ureter or renal artery. The main results are summarized as follows: 1) The renal nerve was composed of A beta, A delta and C fiber groups; the thresholds for each group were 400-800 mV, 1.1-1.5 V, and 2.1-5.8 V, respectively. 2) The dorsal horn cells tested received A and/or C afferent fibers from the kidney, and the more C inputs the dorsal horn cells had, the greater was the response to the stimuli that elicited the renal pain. 3) 94.9% of cells with renal input had the concomitant somatic receptive fields on the skin; the high threshold (HT) and wide dynamic range (WDR) cells exhibited a greater responses than low threshold (LT) cells to the renal pain-producing stimuli. 4) TENS reduced the C-responses of dorsal horn cells to 38.9 +/- 8.4% of the control value and the effect lasted for 10 min after the cessation of TENS. 5) By TENS, the responses evoked by acute occlusion of the ureter or renal artery were reduced to 37.5 +/- 9.7% and 46.3 +/- 8.9% of the control value, respectively. This analgesic effects lasted 10 min after TENS. 6) The responses elicited by squeezing the receptive fields of the skin were reduced to 40.7 +/- 7.9% of the control value and the effects lasted 15 min after TENS. These results suggest that most of dorsal horn cells with renal inputs have the concomitant somatic inputs and TENS can alleviate the renal pain as well as somatic pain.
Animal
;
Cats
;
Female
;
Kidney/innervation/*physiopathology
;
Male
;
Pain/physiopathology/*therapy
;
Support, Non-U.S. Gov't
;
*Transcutaneous Electric Nerve Stimulation
3.Mechanisms of depressor effect of norepinephrine injected into subnucleus commissuriu of nucleus solitarius tractus in rabbits.
Yi, ZHANG ; Hongyan, LUO ; Shenghong, LIU ; Zhengrong, YI ; Ai, LI ; Xinwu, HU ; Changjin, LIU ; Ming, TANG ; Lieju, LIU ; Yuanlong, SONG ; Linlin, GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2005;25(3):263-4, 268
This experiment aimed to investigate the effect of adrenergic system in the subnucleus commissuriu of nucleus solitrius tractus (CNTS) on renal nerve discharges. Norepinephrine (NE) was microinjected into the CNTS of rabbits and mean arterial blood pressure (MAP) and renal nerve discharges (FRND) were synchronously recorded. The results indicated that (1) microinjection of norepinephine into the CNTS of rabbit could significantly attenuate the frequency of renal nerve discharge, and at the same time decrease markedly the mean arterial pressure. (2) Microinjection of 0.3 nmol yohimbin into CNTS had no significant influence on FRND and MAP, but could attenuate and even reverse the effects of NE on FRND and MAP. These results suggest that microinjection of NE into CNTS may activate the alpha-adrenorecptor located in CNTS and secondarily produce a depressor effect by attenuating the activity of periphenal sympathetic nervous system.
Blood Pressure/drug effects
;
Depression, Chemical
;
Kidney/*innervation
;
Microinjections
;
Norepinephrine/*pharmacology
;
Solitary Nucleus/*physiology
;
Sympathetic Nervous System/drug effects
;
Sympathetic Nervous System/*physiopathology
;
Vasomotor System/physiopathology
4.Angiotensin II contents in plasma, and cardiac and renal tissues of sinoaortic denervated rats.
Zheng-Zheng SHAN ; Sheng-Ming DAI ; Feng FANG ; Ding-Feng SU
Acta Physiologica Sinica 2003;55(1):75-78
Our previous data demonstrate that impairment of arterial baroreceptor reflex (ABR) plays an independent role in hypertension target organ damage. To elucidate the mechanisms responsible for the dysfunction of ABR associated organ damage, sinoaortic denervated (SAD) rats were used as an animal model of ABR dysfunction. Twenty-four-hour continuous blood pressure (SBP and DBP), blood pressure variability (BPV), heart rate (HR) and HR variability (HRV) were measured in conscious and unrestrained rats. Angiotensin II (Ang II) in plasma, heart and kidney was assayed by raio-immunological assay (RIA) 1 or 18 weeks after denervation. In short-term SAD rats, twenty-four-hour mean SBP and DBP increased compared with that of sham-operated rats and long-term SAD rats. No significant difference in SBP, DBP or HR was found between long-term SAD rats and sham-operated ones. Compared with the sham-operated rats, long-term SAD rats had elevated BPV. No significant change in Ang II levels of caridiac and renal tissues was found in short-term SAD rats. In long-term SAD rats, Ang II level of plasma was not increased while the Ang II content in the heart and kidney increased. Ang II contents of plasma and tissues in long-term SAD rats exposed to chronic stress were higher than those in the control rats. These results show (1) in short-term SAD rats blood pressure increased, while in long-term SAD rats 24 h mean blood pressure did not increase, although BPV elevated in long-term SAD rats; (2) in long-term SAD rats, secretion of Ang II in cardiac and renal tissues was enhanced and more Ang II released when the animals were exposed to chronic stress. These results suggest that elevated BPV and secretion of Ang II may be related to the development of organ damage induced by ABR dysfunction.
Angiotensin II
;
blood
;
metabolism
;
Animals
;
Aorta
;
innervation
;
metabolism
;
Autonomic Denervation
;
Baroreflex
;
physiology
;
Blood Pressure
;
physiology
;
Carotid Sinus
;
innervation
;
metabolism
;
Hypertension
;
metabolism
;
physiopathology
;
Kidney
;
metabolism
;
Male
;
Myocardium
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
5.Role of renal sympathetic nerve and oxidative stress in foot shock-induced hypertension in rats.
Ren-Di JIANG ; Zhe ZHANG ; Jian-Bing XU ; Tao DONG ; Guo-Xing ZHANG
Acta Physiologica Sinica 2015;67(3):335-340
The present study was aimed to investigate the roles of renal sympathetic nerve and oxidative stress in the development of foot shock-induced hypertension. Ninety rats were divided into 6 groups (the number of each group was 15): control group, foot shock group, denervation of renal sympathetic nerve group, denervation of renal sympathetic nerve + foot shock group, Tempol treatment + foot shock group, denervation of renal sympathetic nerve + Tempol treatment + foot shock group. Rats were received electrical foot shock for 14 days (2-4 mA, 75 V, shocks of 50-100 ms every 30 s, for 4 h each session through an electrified grid floor every day). Renal sympathetic ablation was used to remove bilateral renal sympathetic nerve in rats (rats were allowed to recover for one week before the beginning of the foot shock procedure). The antioxidant Tempol was injected intraperitoneally at 1 h before foot shock. Systolic blood pressure was measured at 1 h after foot shock on day 0, 3, 7, 10 and 14. Contents of thiobarbituric acid reactive substance (TBARS), renin, angiotensin II (AngII) and glutathione peroxidase (GSH-Px) in plasma were measured by ELISA after 14-day foot shock. The results showed that systolic blood pressure of foot shock group was significantly increased (P < 0.05) compared with that of control group from day 7 to day 14 of foot shock. Denervation of renal sympathetic nerve and/or Tempol treatment significantly reduced the increase of systolic blood pressure induced by foot shock. Levels of TBARS, renin and AngII in plasma were increased significantly in foot shock group compared with that of control group (P < 0.05). Plasma GSH-Px concentration was decreased in foot shock group rats compared with that of control group (P < 0.05). Denervation of renal sympathetic nerve and/or tempol treatment significantly reduced the increase in TBARS, renin, AngII levels induced by foot shock in comparison with that of foot shock group (P < 0.05), but had no effects on the reduction of GSH-Px concentration. The results suggest that renal sympathetic nerve may play an important role in the development of foot shock-induced hypertension, and renal sympathetic nerve may influence oxidative stress and directly or indirectly activate renin-angiotensin-aldosterone system, so the foot shock-induced high blood pressure may be maintained and hypertension may therefore be produced.
Animals
;
Antioxidants
;
pharmacology
;
Blood Pressure
;
Cyclic N-Oxides
;
pharmacology
;
Denervation
;
Electric Stimulation
;
Hypertension
;
physiopathology
;
Kidney
;
innervation
;
Oxidative Stress
;
Rats
;
Renin-Angiotensin System
;
Spin Labels
;
Sympathetic Nervous System
;
physiology
6.The effect of catheter based renal synthetic denervation on renin-angiotensin-aldosterone system in patients with resistant hypertension.
Li WANG ; Cheng-zhi LU ; Xin ZHANG ; Di LUO ; Bin ZHAO ; Xiang YU ; Da-sheng XIA ; Xin CHEN ; Xiang-dong ZHAO
Chinese Journal of Cardiology 2013;41(1):3-7
OBJECTIVEto explore the effect of catheter based renal synthetic denervation on renin-angiotensin-aldosterone system (RAAS) and blood pressure reduction in patients with resistant hypertension. and assess the validity and security of the treatment.
METHODSTen patients with resistant hypertension from June 2011 to December 2011 were retrospectively reviewed, and then all of 10 patients screened for eligibility were allocated to renal denervation. Primary endpoints were changes of office blood pressure at 1 week, 1, 3 and 6 months after procedure. We assessed the effectiveness of renal sympathetic denervation with heart rate (HR), renin activity (PRA), angiotensin II (AngII), aldosterone (Ald), and creatinine (Cr) before and 2 weeks after procedure.
RESULTSOffice blood pressure after catheter-based renal denervation decreased by 22.8/9.1 mm Hg (1 mm Hg = 0.133 kPa), 34.8/14.7 mm Hg, 42.6/20.7 mm Hg, 43.2/21.6 mm Hg, at 1 week, 1, 3 and 6 months, respectively (P < 0.001). Meanwhile, the level of PRA, AngII, Ald decreased by (1.11 ± 0.89) ng×ml(-1)×h(-1) (P = 0.003), (17.06 ± 13.82) ng/L (P = 0.004), (404.5 ± 285.8) ng/L (P = 0.002), respectively; and heart rate decreased by 5.1 bpm (P = 0.002). However, the Cr level and eGFR did not change significantly (P > 0.05).
CONCLUSIONCatheter-based renal sympathetic denervation can reduce the level of renin activity, angiotensin II and aldosterone, and causes substantial and sustained blood-pressure reduction.
Adult ; Aged ; Catheter Ablation ; methods ; Female ; Humans ; Hypertension ; metabolism ; physiopathology ; surgery ; Kidney ; innervation ; metabolism ; Male ; Middle Aged ; Renin-Angiotensin System ; Sympathectomy ; methods
7.Impact of renal denervation on expression of renalase and tyrosine hydroxylase in adult rats with spontaneous hypertension.
Yunzhong GUO ; Luhong LI ; Lihua TAN ; Xiaohong TANG ; Qiong YANG ; Weihong JIANG
Journal of Central South University(Medical Sciences) 2012;37(8):829-833
OBJECTIVE:
To investigate the impact of renal denervation on the blood pressure, plasma renalase content and expression of renalase and tyrosine hydroxylase (TH) in the idney of spontaneous hypertensive (SH) rats and to explore the role of renal denervation in lowering the blood pressure.
METHODS:
SH rats were randomly assigned into a baseline group, a surgery (renal denervation) group, a sham group and a control group (n=48). WKY rats matched in age (n=12) served as a baseline control group. All rats were housed until 12 weeks old. Then, the rats in the baseline group and the WKY group were sacrificed whose blood and kidney were collected for examination. In the renal denervation group, the sham group and the control group, the blood pressure was monitored continuously. One week and 6 weeks after the renal denervation, 6 rats in each group were sacrificed whose blood and kidney were collected. ELISA was employed to measure the plasma renalase and Western blot assay done to detect the expression of TH and renalase in the kidney.
RESULTS:
Compared with WKY rats, blood pressure significantly increased and TH protein expression markedly elevated (P<0.05) in SH rats in the baseline group, but plasma renalase content and protein expression of renalase in the kidney dramatically reduced (P<0.05). One week after the surgery, the mean arterial pressure and TH protein expression in the surgery group were lowered compared with the baseline group and dramatically reduced compared with the sham group and the control group (P<0.05). In the surgery group, the renalase level was markedly increased compared with the baseline group, the sham group, and the control group (P<0.05). Six weeks after the renal denervation, the mean arterial pressure and TH level in the surgery group were significantly increased but the renalase content and expression markedly reduced compared with those 1 week, but there were no marked differences among the surgery group, the sham group, and the control group (P>0.05). No pronounced differences in the above variables were found between the sham group and the control group at any time point (P>0.05).
CONCLUSION
Renal denervation can lower the blood pressure, which may attribute to the suppression of sympathetic nerves, increase in plasma renalase content and renalase expression in the kidney.
Animals
;
Blood Pressure
;
physiology
;
Hypertension
;
surgery
;
Kidney
;
enzymology
;
innervation
;
Male
;
Monoamine Oxidase
;
blood
;
metabolism
;
Rats
;
Rats, Inbred SHR
;
Sympathectomy
;
methods
;
Sympathetic Nervous System
;
physiopathology
;
Tyrosine 3-Monooxygenase
;
metabolism
8.Mechanism of transmission and modulation of renal pain in cats; effect of nucleus raphe magnus stimulation on renal pain.
Eun Joo BAIK ; Yong JEONG ; Taick Sang NAM ; Won Kon KIM ; Kwng Se PAIK
Yonsei Medical Journal 1995;36(4):348-360
Initially, when periaqueductal gray (PAG) is electrically stimulated, analgesia is induced, and this phenomenon is called stimulation-produced analgesia. Nucleus raphe magnus (NRM) as well as PAG are known to be the potent analgesic centers. NRM could modulate the nociceptive response of spinal cord neurons through spinally projecting fibers. However, as well as the above analgesic effects have been confined to the somatic pain, it was variable according to species, and the analgesic effect by NRM stimulation on the visceral pain was not yet clarified. In this study the analgesic effect by NRM stimulation on the visceral pain was examined through recording the activities of the dorsal horn neurons with renal input and renal pain, as a type of visceral pain. The renal pain was induced by ureteral occlusion or renal arterial occlusion, which in turn activated the renal mechanoreceptor or chemoreceptor. These cells had concomitant somatic input. In order to compare the effects of NRM stimulation on the renal pain with somatic pain, the somatic stimulation such as squeezing was conducted on the peripheral receptive field. The main results are summarized as follows: 1) After an electrical stimulation of NRM, spontaneous activities of dorsal horn neurons with renal input were reduced to 73.3 +/- 9.7% of the control value. 2) After an electrical stimulation of NRM, activities of dorsal horn neurons with renal input evoked by a brush, a type of non-noxious stimuli, did not change significantly. But the activities by a squeeze, a type of noxious stimuli, the activities were reduced to 63.2 +/- 7.2% of the control value. 3) After an electrical stimulation of NRM, activities of dorsal horn neurons with renal input evoked by occlusion of ureter or renal artery were reduced to 46.7 +/- 8.8% and 49.0 +/- 8.0% of the control value respectively. 4) The inhibitory effect of NRM on the dorsal horn neurons with renal input did not show any difference between renal A delta fiber and C fiber group. 5) By the electrical stimulation of NRM, the activities evoked by ureteral occlusion showed more reduction in the high threshold cell group than in the wide dynamic range cell group. These results suggest that activation of NRM can alleviate the renal pain as well as the somatic pain by modulating the dorsal horn neurons activities.
Afferent Pathways/cytology/physiology
;
Animal
;
Cats
;
Electric Stimulation
;
Female
;
Kidney/innervation/*physiopathology
;
Male
;
Nervous System/cytology
;
Nervous System Physiology
;
Neurons/physiology
;
*Pain Threshold
;
Raphe Nuclei/*physiology
;
Spinal Cord/cytology/physiology
;
Support, Non-U.S. Gov't