1.Changes of calpain in renal tubular epithelial cells during kidney ischemia/reperfusion injury of neonatal rats.
Bo YU ; Yu-jia YAO ; Zhen-lang LIN
Chinese Journal of Pediatrics 2005;43(10):789-791
Animals
;
Calpain
;
metabolism
;
Epithelial Cells
;
metabolism
;
Kidney
;
cytology
;
Kidney Tubules
;
cytology
;
metabolism
;
Rats
;
Reperfusion Injury
;
metabolism
3.Research progress in kidney dendritic cells.
Journal of Zhejiang University. Medical sciences 2015;44(5):584-588
Kidney dendritic cells(DC) play important roles in the pathogenesis of kidney diseases. Kidney DC presents anti-inflammatory effects in certain kidney diseases, sometimes presents pro-inflammation in other diseases, and sometimes their effects are changing in different stages of the disease, suggesting that the differentiation and function of kidney DC may be influenced by microenvironment. This article reviews the origin and distribution of kidney DC subsets and their roles in the pathogenesis of kidney diseases such as lupus nephritis and pyelonephritis, and the functional regulation of kidney DC by proximal tubule epithelial cells.
Cell Differentiation
;
Dendritic Cells
;
cytology
;
immunology
;
Epithelial Cells
;
cytology
;
Humans
;
Inflammation
;
immunology
;
Kidney
;
cytology
;
Kidney Diseases
;
immunology
;
Lupus Nephritis
;
immunology
;
Pyelonephritis
;
immunology
4.Role of miR-663 in acute renal graft rejection: an in vitro study.
Xiao-You LIU ; Jie ZHANG ; Jie LIANG ; Yong-Guang LIU ; Jian-Min HU ; Zheng-Yao JIANG ; Ze-Feng GUO
Journal of Southern Medical University 2016;36(3):419-422
OBJECTIVETo compare the serum miR-663 levels in renal transplant patients with and without acute rejection (AR) and explore the role of miR-663 acute renal graft rejection.
METHODSReal time-PCR was used to determine serum miR-663 levels in renal transplant recipients with and without AR. MTT assay and Annexin V-FITC assay were employed to examine the viability and apoptosis of human renal glomerular endothelial cells (HRGEC) treated with a miR-663 mimic or a miR-663 inhibitor, and ELISA was performed to detect the expression of inflammation-related cytokines including IL-6, IFN-γ, CCL-2 and TNF-α in the cells. Transwell assay was used to examine the effect of miR-663 mimic and miR-663 inhibitor on the chemotactic capability of macrophages.
RESULTSSerum miR-663 level was significantly higher in renal transplant recipients with AR than in those without AR. The miR-663 mimic significantly inhibited the viability of HRGECs and increase the cell apoptosis rate, while miR-663 inhibitor suppressed the cell apoptosis. The miR-663 mimic increased the expression levels of inflammation-related cytokines and enhanced the chemotactic capability of macrophages.
CONCLUSIONmiR-663 might play important roles in acute renal graft rejection and may become a therapeutic target for treating AR.
Apoptosis ; Cells, Cultured ; Cytokines ; metabolism ; Endothelial Cells ; cytology ; Graft Rejection ; blood ; Humans ; Kidney Glomerulus ; cytology ; Kidney Transplantation ; Macrophages ; cytology ; drug effects ; MicroRNAs ; blood
5.Distribution of Telocytes in Vital Organs of ApoE Mice.
Ying XU ; Hu TIAN ; Jian YU ; Jia Lin CHENG ; Yu Cheng ZHAO
Acta Academiae Medicinae Sinicae 2018;40(6):778-784
Objective To identify and verify the distribution of Telocytes derived from heterogeneous interstitial cells in the vital organs of ApoE mice.Methods Heart,kidney,and liver tissues were harvested from ApoE adult mice. Immunohistochemical assays were performed by using different immunobiological markers.Results Telocytes were found in these vital organs. The expressions of immunobiological markers differed among different organs. CD34,CD117,and CD28 were positively expressed in Telocytes in cardiac tissue;CD117 and plateled-derived growth factor-Α were negatively expressed in Telocytes in renal tissue;and CD117 and plateled-derived growth factor receptor-Α had negative expression in Telocytes in hepatic tissue. Furthermore,the distribution of Telocytes also differed in the same organ.Conclusions Telocytes exist in the vital organs of ApoE mice,as demonstrated by immunohistochemisty assay. The expressions of immunobiological markers differ among Telocytes in different organs.
Animals
;
Antigens, CD34
;
metabolism
;
CD28 Antigens
;
metabolism
;
Kidney
;
cytology
;
Liver
;
cytology
;
Mice
;
Mice, Knockout, ApoE
;
Myocardium
;
cytology
;
Proto-Oncogene Proteins c-kit
;
metabolism
;
Telocytes
;
cytology
7.Dynamical distribution of bone marrow mesenchymal stem cells in rat model of chronic aristolochic acid nephropathy.
Jie ZOU ; Li-Ran XU ; Xue-Chao WANG
Chinese Journal of Integrated Traditional and Western Medicine 2009;29(7):636-638
OBJECTIVETo investigate the distributive path and proliferative rule of marrow mesenchymal stem cells (MSCs) in the rat transplanted via caudal vein from male rat to female rats model of chronic aristolochic acid nephropathy (CAAN).
METHODSCells taken from femoral bone marrow of male Wistar rats were made into single cell suspension, cultured, purified and identified as MSCs. MSCs were transplanted via caudal vein into 50 female Wistar CAAN model rats allocated in the test group, they were killed, 10 rats in a batch, at various time points (6 h, 48 h, 10 d, 30 d and 60 d after transplantation). Besides, 10 rats allocated in the control group were killed on the 30th day after received sham-transplantation. Kidney tissue of all rats was taken for detecting cells originated from the donors by fluorescence in situ hybridization test with FAM-labeled sex determining region of Y chromosome (SRY FISH) probe, and their number in SRY was counted using SRY PCR.
RESULTSMSCs were mainly distributed in the glomerular capillaries at the time points of 6 h and 48 h, but the number of MSCs in glomerular capillaries decreased and those in renal mesenchyma increased at the time points from 10 d to 60 d gradually, then tended to a steady state, meanwhile it showed a stable increasing trend in renal tubule. Cell colony of MSCs could be found in mesenchyma with a slowed down increasing between 30 d to 60 d, but the increasing in tubule was still steady.
CONCLUSIONMSCs originated from the donor can enter the kidney of acceptor and distribute from blood capillary to renal mesenchyma and tubule, and they can long time inhabit there and make propagation.
Animals ; Aristolochic Acids ; toxicity ; Bone Marrow Cells ; cytology ; Cell Proliferation ; Female ; Kidney ; pathology ; Kidney Diseases ; chemically induced ; pathology ; Male ; Mesenchymal Stromal Cells ; cytology ; Rats ; Rats, Wistar
9.Effective penetration of cell-permeable peptide mimic of tyrosine residue 654 domain of beta-catenin into human renal tubular epithelial cells.
Rui, ZENG ; Gang, XU ; Min, HAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(6):630-4
Phosphorylation of beta-catenin tyrosine residue 654 plays an important role in the epithelial to myofibroblast transition (EMT). Introducing mimic peptide of tyrosine residue 654 domain of beta-catenin into cells may influence phosphorylation of beta-catenin tyrosine residue 654. To deliver this mimic peptide into renal epithelial cells, we used penetratin as a vector, which is a novel cell permeable peptide, to deliver hydrophilic molecules into cells. A tyrosine 654 residue domain mimic peptide of beta-catenin (PM) with fused penetratin was constructed, purified and then detected for the penetration of the mimic peptide into human renal tubular epithelial cells (HK-2). The results showed that purified fusion mimic peptide could efficiently and rapidly translocate into human renal tubular epithelial cells. It is concluded that a cell-permeable peptides mimic of tyrosine residue 654 domain of beta-catenin was successfully obtained, which may provide a useful reagent for interfering the human renal tubular epithelial-mesenchymal transition.
Carrier Proteins/*metabolism
;
Epithelial Cells/cytology
;
Epithelial Cells/*metabolism
;
Fibroblasts/cytology
;
Fibroblasts/metabolism
;
Kidney Tubules/*cytology
;
Peptides/metabolism
;
Permeability
;
Phosphorylation
;
Tyrosine/*metabolism
;
beta Catenin/*metabolism
10.Pathomechanisms of pericyte-myofibroblast transition in kidney and interventional effects of Chinese herbal medicine.
Ying-Lu LIU ; Ge SHI ; Dong-Wei CAO ; Yi-Gang WAN ; Wei WU ; Yue TU ; Bu-Hui LIU ; Wen-Bei HAN ; Jian YAO
China Journal of Chinese Materia Medica 2018;43(21):4192-4197
In the kidney, pericyte is the major source of myofibroblast (MyoF) in renal interstitium. It is reported that pericyte-myofibroblast transition(PMT)is one of the important pathomechanisms of renal interstitial fibrosis(RIF). Among them, the main reasons for promoting RIF formation include pericyte recruitment, activation and isolation, as well as the lack of pericyte-derived erythropoietin. During the PMT startup process, pericyte activation and its separation from microvessels are controlled by multiple signal transduction pathways, such as transforming growth factor-β(TGF-β)pathway, vascular endothelial growth factor receptor (VEGFR) pathway and platelet derived growth factor receptor (PDGFR) pathway;Blocking of these signaling pathways can not only inhibit PMT, but also suppress renal capillaries reduction and further alleviate RIF. In clinic, many traditional Chinese medicine compound prescriptions, single traditional Chinese herbal medicine (CHM) and their extracts have the clear effects in alleviating RIF, and some of their intervention actions may be related to pericyte and its PMT. Therefore, the studies on PMT and its drug intervention will become the main development direction in the research field of anti-organ fibrosis by CHM.
Drugs, Chinese Herbal
;
pharmacology
;
Fibrosis
;
Humans
;
Kidney
;
cytology
;
drug effects
;
pathology
;
Myofibroblasts
;
cytology
;
Pericytes
;
cytology
;
Receptors, Platelet-Derived Growth Factor
;
metabolism
;
Signal Transduction
;
Vascular Endothelial Growth Factor A
;
metabolism