1.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
2.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
3.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
4.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
5.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
6.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
7.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
8.Quantifying Brain Atrophy Using a CSF-Focused Segmentation Approach
Kyoung Yoon LIM ; Seongbeom PARK ; Duk L. NA ; Sang Won SEO ; Min Young CHUN ; Kichang KWAK ;
Dementia and Neurocognitive Disorders 2025;24(2):115-125
Background:
and Purpose: Brain atrophy, characterized by sulcal widening and ventricular enlargement, is a hallmark of neurodegenerative diseases such as Alzheimer’s disease. Visual assessments are subjective and variable, while automated methods struggle with subtle intensity differences and standardization, highlighting limitations in both approaches. This study aimed to develop and evaluate a novel method focusing on cerebrospinal fluid (CSF) regions by assessing segmentation accuracy, detecting stage-specific atrophy patterns, and testing generalizability to unstandardized datasets.
Methods:
We utilized T1-weighted magnetic resonance imaging data from 3,315 participants from Samsung Medical Center and 1,439 participants from other hospitals. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), and W-scores were calculated for each region of interest (ROI) to assess stage-specific atrophy patterns.
Results:
The segmentation demonstrated high accuracy, with average DSC values exceeding 0.9 for ventricular and hippocampal regions and above 0.8 for cortical regions. Significant differences in W-scores were observed across cognitive stages (cognitively unimpaired, mild cognitive impairment, dementia of Alzheimer’s type) for all ROIs (all, p<0.05). Similar trends were observed in the images from other hospitals, confirming the algorithm’s generalizability to datasets without prior standardization.
Conclusions
This study demonstrates the robustness and clinical applicability of a novel CSF-focused segmentation method for assessing brain atrophy. The method provides a scalable and objective framework for evaluating structural changes across cognitive stages and holds potential for broader application in neurodegenerative disease research and clinical practice.
9.Reverse tube direction and epistaxis in left nasotracheal intubation: a randomized controlled trial
Jun-Young PARK ; Jihion YU ; Chan-Sik KIM ; Taeho MUN ; Woo Shik JEONG ; Jong Woo CHOI ; Kichang LEE ; Young-Kug KIM
Korean Journal of Anesthesiology 2024;77(6):596-604
Background:
The incidence of epistaxis during nasotracheal intubation via the left nostril is more frequent than that during intubation via the right nostril. This study evaluated the effect of the reverse bevel and tip direction of the nasotracheal tube on the incidence of epistaxis during nasotracheal intubation via the left nostril.
Methods:
Patients undergoing right-sided maxillofacial surgery requiring left nasotracheal intubation were randomly allocated to the control (tracheal tube in the conventional direction) or reverse (a 180˚ reverse direction, with the tube bevel facing the nasal septum and the leading edge (i.e., the tip) of the bevel pointing away from the nasal septum) groups (n = 37 for both). The primary outcome was the incidence of epistaxis evaluated using videolaryngoscopy.
Results:
The incidence of epistaxis in the reverse group was significantly lower than that in the control group (9 [24.3%] vs. 20 [54.1%], P = 0.009; relative risk: 0.45, 95% CI [0.24, 0.85], absolute risk reduction: 29.8%, number needed to treat: 3). The severity of epistaxis was significantly lower in the reverse group (P = 0.002). The first attempt nasal passage (P = 0.027) was significantly higher in the reverse group. Postoperative nasal pain was lower (P < 0.001), and patient satisfaction was higher (P < 0.001) in the reverse group. Nasotracheal tube-related complications did not occur in either group.
Conclusions
The reverse bevel and tip direction of the nasotracheal tube reduced the incidence and severity of epistaxis and increased patient satisfaction among patients undergoing left nasotracheal intubation.
10.Reverse tube direction and epistaxis in left nasotracheal intubation: a randomized controlled trial
Jun-Young PARK ; Jihion YU ; Chan-Sik KIM ; Taeho MUN ; Woo Shik JEONG ; Jong Woo CHOI ; Kichang LEE ; Young-Kug KIM
Korean Journal of Anesthesiology 2024;77(6):596-604
Background:
The incidence of epistaxis during nasotracheal intubation via the left nostril is more frequent than that during intubation via the right nostril. This study evaluated the effect of the reverse bevel and tip direction of the nasotracheal tube on the incidence of epistaxis during nasotracheal intubation via the left nostril.
Methods:
Patients undergoing right-sided maxillofacial surgery requiring left nasotracheal intubation were randomly allocated to the control (tracheal tube in the conventional direction) or reverse (a 180˚ reverse direction, with the tube bevel facing the nasal septum and the leading edge (i.e., the tip) of the bevel pointing away from the nasal septum) groups (n = 37 for both). The primary outcome was the incidence of epistaxis evaluated using videolaryngoscopy.
Results:
The incidence of epistaxis in the reverse group was significantly lower than that in the control group (9 [24.3%] vs. 20 [54.1%], P = 0.009; relative risk: 0.45, 95% CI [0.24, 0.85], absolute risk reduction: 29.8%, number needed to treat: 3). The severity of epistaxis was significantly lower in the reverse group (P = 0.002). The first attempt nasal passage (P = 0.027) was significantly higher in the reverse group. Postoperative nasal pain was lower (P < 0.001), and patient satisfaction was higher (P < 0.001) in the reverse group. Nasotracheal tube-related complications did not occur in either group.
Conclusions
The reverse bevel and tip direction of the nasotracheal tube reduced the incidence and severity of epistaxis and increased patient satisfaction among patients undergoing left nasotracheal intubation.

Result Analysis
Print
Save
E-mail