1.Acute kidney injury in children with type 1 diabetes mellitus hospitalized for diabetic ketoacidosis.
Shaila PACHAPURE ; Jasmine KANDAGAL ; Manjunath REVANASIDDAPPA ; Kavita KONDED
Journal of the ASEAN Federation of Endocrine Societies 2025;40(2):28-32
OBJECTIVES
Diabetic ketoacidosis (DKA) is the most common initial presentation in children with newly diagnosed type 1 diabetes. Severe dehydration/acidosis, shock at admission, and hyperchloremia contribute to acute kidney injury (AKI). This retrospective study was done to determine the proportion of children hospitalized for DKA who had AKI and to compare clinical parameters between children with DKA and with AKI and without AKI to identify the risk factors associated with AKI.
METHODOLOGYA retrospective review of all DKA admissions with type 1 diabetes was done. AKI was diagnosed as per KDIGO-2012 criteria. The analysis was done using a Chi-square test to assess the association between the status of AKI and other parameters. The Independent t-test was applied for comparison with the mean score between the No AKI / AKI group for numerical variables with normal distribution. A multivariable logistic regression analysis was performed to compare clinical parameters between both groups.
RESULTSOut of 32 children with DKA, 13 (40.63%) developed AKI. Among them, 9 had AKI at admission and 4 children developed AKI within the first 48 hours of admission. Optimum fluid management resolved AKI in 10 patients, but 3 of them required dialysis. Parameters like higher heart rate (p = 0.0390), higher respiratory rate (p = 0.0402), high leukocyte count (p = 0.0005), severe hyperglycemia (p = 0.0204), severe acidosis (p = 0.0001), hyperchloremia (p = 0.016) and shock at admission (p = 0.0001) were present in children with DKA and AKI.
CONCLUSIONIn our study, a high proportion of children with DKA had AKI, which causes prolonged acidosis and hospital stay. Hence, comparing clinical parameters between both groups helps in identifying risk factors associated with AKI in persons with type 1 diabetes with DKA.
Human ; Diabetic Ketoacidosis ; Acute Kidney Injury ; Ketone Bodies ; Hyperglycemia
2.Sodium butyrate activates HMGCS2 to promote ketone body production through SIRT5-mediated desuccinylation.
Yanhong XU ; Xiaotong YE ; Yang ZHOU ; Xinyu CAO ; Shiqiao PENG ; Yue PENG ; Xiaoying ZHANG ; Yili SUN ; Haowen JIANG ; Wenying HUANG ; Hongkai LIAN ; Jiajun YANG ; Jia LI ; Jianping YE
Frontiers of Medicine 2023;17(2):339-351
Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.
Mice
;
Animals
;
Butyric Acid/metabolism*
;
Ketone Bodies/metabolism*
;
Liver/metabolism*
;
Hydroxybutyrates/metabolism*
;
Down-Regulation
;
Sirtuins/metabolism*
;
Hydroxymethylglutaryl-CoA Synthase/metabolism*
3.Potential implications of ketone body metabolism changes and ketogenic therapy in the treatment of heart failure.
Qiong WANG ; Siyu YAN ; Shuyu KUANG ; Mengmeng ZHOU ; Chunling JIANG
Chinese Critical Care Medicine 2023;35(7):769-772
Heart failure (HF) has become a major challenge in the treatment of global cardiovascular diseases. Great progress has been made in the drug treatment of HF, however, rehospitalization rate and mortality of patients with HF are still high. Hence, there is an urgent need to explore new treatment strategy and new underlying pathogenic mechanisms. In recent years, some researchers have suggested that regulation of ketone body metabolism may become a potentially promising therapeutic approach for HF. Some studies showed that the oxidative utilization of fatty acids and glucose was decreased in the failing heart, accompanied by the increase of ketone body oxidative metabolism. The enhancement of ketone body metabolism in HF is a compensatory change during HF. The failing heart preferentially uses ketone body oxidation to provide energy, which helps to improve the body's cardiac function. This review will discuss the potential significance of ketone body metabolism in the treatment of HF from three aspects: normal myocardial ketone body metabolism, the change of ketone body metabolism in HF, the effect of ketogenic therapy on HF and its treatment.
Humans
;
Heart Failure/metabolism*
;
Myocardium/metabolism*
;
Ketone Bodies/metabolism*
;
Cardiovascular Diseases
;
Fatty Acids/metabolism*
;
Energy Metabolism
4.An examination of the carbon metabolic pathways in Acinetobacter sp. TAC-1 in the context of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) utilization.
Huan LIU ; Wang CHEN ; Senwen TAN ; Siyu LIANG ; Chenxi YANG ; Qian ZHANG
Chinese Journal of Biotechnology 2023;39(11):4663-4681
The present study aimed to unravel the carbon metabolism pathway of Acinetobacter sp. TAC-1, a heterotrophic nitrification-aerobic denitrification (HN-AD) strain that utilizes poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source. Sodium acetate was employed as a control to assess the gene expression of carbon metabolic pathways in the TAC-1 strain. The results of genome sequencing demonstrated that the TAC-1 strain possessed various genes encoding carbon metabolic enzymes, such as gltA, icd, sucAB, acs, and pckA. KEGG pathway database analysis further verified the presence of carbon metabolism pathways, including the glycolytic pathway (EMP), pentose phosphate pathway (PPP), glyoxylate cycle (GAC), and tricarboxylic acid (TCA) cycle in the TAC-1 strain. The differential expression of metabolites derived from distinct carbon sources provided further evidence that the carbon metabolism pathway of TAC-1 utilizing PHBV follows the sequential process of PHBV (via the PPP pathway)→gluconate (via the EMP pathway)→acetyl-CoA (entering the TCA cycle)→CO2+H2O (generating electron donors and releasing energy). This study is expected to furnish a theoretical foundation for the advancement and implementation of novel denitrification processes based on HN-AD and solid carbon sources.
3-Hydroxybutyric Acid
;
Carbon/metabolism*
;
Polyesters
;
Hydroxybutyrates
;
Metabolic Networks and Pathways
5.Inhibitory effect of ketogenic diet on neuroblastoma in BALB/c-nu mouse models.
Jiaojiao HE ; Linya LÜ ; Junwei PENG ; Changchun LI ; Xiangru KONG ; Jun ZHANG ; Liang PENG
Journal of Southern Medical University 2020;40(8):1155-1164
OBJECTIVE:
To investigate the inhibitory effect of ketogenic diet (KD) on growth of neuroblastoma in mice.
METHODS:
BALB/c-nu mouse models bearing neuroblastoma xenografts were established by subcutaneous injection of human neuroblastoma cell line (SH-SY5Y). When the tumor volume reached 250 mm3, the mice were randomized into SD group with standard diet and PBS treatment, KD group with ketogenic diet and PBS treatment, and CP+KD group with ketogenic diet and cyclophosphamide (60 mg·kg·day) treatment, =8. The tumor volume, body weight, blood glucose, ketone body (β-Hydroxybutyrate) levels, and hepatic steatosis in the mice were assessed. The expressions of caspase-3 and caspase-8 were detected by Western blotting, and Ki67 expresison was detected using immunohistochemistry (IHC). Transmission electron microscopy (TEM) was employed for the autophagosomes, and the autophagic protein Beclin1, LC3A/B and P62 were detected by IHC and Western blotting.
RESULTS:
On day 28 post tumor cell injection, the mice in KD and CP+KD groups could prolong the overall survival rates than that in SD group ( < 0.001). On day 22 post the injection, the tumor volume in KD group was smaller than that in SD group ( < 0.05); on 16, 19, and 22 day post the injection, the tumor volume in CP+KD group was smaller than that in SD group ( < 0.01). The mice in SD group showed greater body weight on day 19 and higher blood glucose level on day 13 post the injection than those in the other two groups ( < 0.05). Blood ketone level and hepatic steatosis score were higher and glucose ketone index (GKI) was lower in KD and CP+KD groups than those in SD group (all < 0.05). The expressions of Ki67 and apoptotic proteins were detected in the tumor tissues of all groups. TEM revealed more autophagosomes in the tumor tissues of KD group than that of SD group. P62 expression was lowered ( < 0.01) and Beclin1 and LC3A/B expressions were up-regulated in the tumor tissues of KD group ( < 0.05), which is consisitent with IHC.
CONCLUSIONS
KD has a strong anti-tumor effect in the xenograft mouse model possibly by regulating cell autophagy.
3-Hydroxybutyric Acid
;
Animals
;
Blood Glucose
;
Cell Line, Tumor
;
Diet, Ketogenic
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Neuroblastoma
6.Effect of ginsenosides on serous metabonomic profiles in cerebral ischemia-reperfusion rats based on ~1H-NMR.
Dong-Min CAO ; Qin-Xiao GUAN ; Ya-Li LIU ; Shu-Mei WANG
China Journal of Chinese Materia Medica 2020;45(5):1142-1148
Serum metabonomic profiles of the model of focal cerebral ischemia reperfusion is established with the suture-occluded method by Longa to study the effect of ginsenosides. In this study, 48 rats were randomly divided into six groups: sham-operated group, pathological model group, positive drug group(6 mg·kg~(-1)·d~(-1)) and high, medium, low-dose ginsenosides groups(200, 100, 50 mg·kg~(-1)·d~(-1)). They are given intragastric administration respectively with same amount of 0.5% CMC-Na,nimodipine and ginsenoside for 5 days. At 2 h after the final administration, the model was established with the suture-occluded method, and free radical-scavenging activity changes of ginsenoside were observed by maillard reaction, and Longa was possible used as a renoprotective agent-occluded method. At the end of 24 h after the reperfusion, the hemolymph of rats in each group was collected, and the ~1H-NMR spectrum was collected after being treated by certain methods, and analyzed by principal component analysis(PCA). Compared with sham-operated group, pathological model group showed significant increases in the levels of lactate, glutamate, taurine, choline, glucose and methionine, but decreases in the levels of 3-hydroxybutyrate and phosphocreatine/creatine in serum. After treatment with ginsenosides, lipid, 3-hydroxybutyrate and phosphocreatine/creatine were increased in the serum of ginsenosides group rats, but with decreases in lactate and glutamate. The results showed that ginsenosides could regulate metabolic disorders in rats with focal cerebral ischemia reperfusion, and promote a recovery in the process of metabolism. It's helpful to promote the metabolic changes in rats with focal cerebral ischemia reperfusion via ~1H-NMR, and lay a foundation to develop ginsenosides as a new drug to treat ischemic cerebral paralysis.
3-Hydroxybutyric Acid
;
Animals
;
Brain Ischemia/metabolism*
;
Creatine
;
Ginsenosides/pharmacology*
;
Hemolymph
;
Metabolome
;
Phosphocreatine
;
Proton Magnetic Resonance Spectroscopy
;
Random Allocation
;
Rats
;
Reperfusion Injury/metabolism*
7.A Rare Cause of Life-Threatening Ketoacidosis: Novel Compound Heterozygous OXCT1 Mutations Causing Succinyl-CoA:3-Ketoacid CoA Transferase Deficiency
Young A KIM ; Seong Heon KIM ; Chong Kun CHEON ; Yoo Mi KIM
Yonsei Medical Journal 2019;60(3):308-311
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency is a rare inborn error of ketone body utilization, characterized by episodic or permanent ketosis. SCOT deficiency is caused by mutations in the OXCT1 gene, which is mapped to 5p13 and consists of 17 exons. A 12-month-old girl presented with severe ketoacidosis and was treated with continuous renal replacement therapy. She had two previously unrecognized mild-form episodes of ketoacidosis followed by febrile illness. While high levels of ketone bodies were found in her blood and urine, other laboratory investigations, including serum glucose, were unremarkable. We identified novel compound heterozygous mutations in OXCT1:c.1118T>G (p.Ile373Ser) and a large deletion ranging from exon 8 to 16 through targeted exome sequencing and microarray analysis. This is the first Korean case of SCOT deficiency caused by novel mutations in OXCT1, resulting in life-threatening ketoacidosis. In patients with unexplained episodic ketosis, or high anion gap metabolic acidosis in infancy, an inherited disorder in ketone body metabolism should be suspected.
Acid-Base Equilibrium
;
Acidosis
;
Blood Glucose
;
Exome
;
Exons
;
Female
;
Humans
;
Infant
;
Ketone Bodies
;
Ketosis
;
Metabolism
;
Microarray Analysis
;
Renal Replacement Therapy
;
Transferases
8.Microbial production of poly (glycolate-co-lactate-co-3-hydroxybutyrate) from glucose and xylose by Escherichia coli.
Yangyang DA ; Wei LI ; Lilong SHI ; Zhengjun LI
Chinese Journal of Biotechnology 2019;35(2):254-262
Escherichia coli was metabolically engineered to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate) using glucose and xylose as carbon sources. The combinatorial biosynthetic route was constructed by the overexpression of a series of enzymes including D-tagatose 3-epimerase, L-fuculokinase, L-fuculose-phosphate aldolase, aldehyde dehydrogenase, propionyl-CoA transferase, β-ketothiolase, acetoacetyl-CoA reductase, and polyhydroxyalkanoate synthase. Overexpression of polyhydroxyalkanoate granule associated protein significantly improved biopolymer synthesis, and the recombinant strain reached 3.73 g/L cell dry weight with 38.72% (W/W) biopolymer content. A co-culture engineering strategy was developed to produce biopolymer from a mixture of glucose and xylose, achieving 4.01 g/L cell dry weight containing 21.54% (W/W) biopolymer. The results of this work offer an approach for simultaneously utilizing glucose and xylose and indicate the potential for future biopolymer production from lignocellulosic biomass.
3-Hydroxybutyric Acid
;
Escherichia coli
;
Glucose
;
Glycolates
;
Lactates
;
Metabolic Engineering
;
Polyesters
;
Xylose
9.Effect of reducing the activity of respiratory chain on biosynthesis of poly(3-hydroxybutyrate-co-lactate) in Escherichia coli.
Jingxian LU ; Zhimin LI ; Qin YE ; Hui WU
Chinese Journal of Biotechnology 2019;35(1):59-69
Poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] belongs to the polyhydroxyalkanoates (PHA) family and possesses promising properties including biocompatibility and biodegradability. In this study, we directly synthesized P(3HB-co-LA) with glucose by introducing the β-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha, the engineered propionate CoA transferase from Clostridium propionicum and the engineered polyhydroxyalkanoate synthase from Pseudomonas fluorescens strain 2P24 into Escherichia coli. The polymer content was 83.9% (W/W), and the molar percentage of lactate reached 1.6%. On this basis, in order to accumulate lactate, we reduced the activity of respiratory chain by deleting the ubiX gene, which is involved in the synthesis of coenzyme Q8. Moreover, we removed the dld gene to avoid the conversion of lactate to pyruvate during the fermentation. With these manipulations, the molar percentage of lactate in the polymer was improved to 14.1%, with an 81.7% (W/W) of polymer content. The test results indicated that the strategy of reducing the activity of respiratory chain effectively increased the lactate units in the polymer, and it contributed a new approach to change the content of monomer components in the polymer.
3-Hydroxybutyric Acid
;
Electron Transport
;
Escherichia coli
;
Lactic Acid
;
Metabolic Engineering
;
Polyesters
10.Effects of Low-carbohydrate and High-fat Diet Supplemented with Ketogenic Drink on Cognitive Function and Physical Performance in the Elderly at High Risk for Dementia
Eun Ji KIM ; Jung Sik PARK ; Won Sun CHOI ; Yoo Kyoung PARK
Korean Journal of Community Nutrition 2019;24(6):525-534
OBJECTIVES: Reduced glucose utilization in the main parts of the brain involved in memory is a major cause of Alzheimer's disease, in which ketone bodies are used as the only and effective alternative energy source of glucose. This study examined the effects of a low-carbohydrate and high-fat (LCHF) diet supplemented with a ketogenic nutrition drink on cognitive function and physical activity in the elderly at high risk for dementia.METHODS: The participants of this study were 28 healthy elderly aged 60-91 years showing a high risk factor of dementia or whose Korean Mini-Mental State Examination (K-MMSE) score was less than 24 points. Over 3 weeks, the case group was given an LCHF diet with nutrition drinks consisting of a ketone/non-ketone ratio of 1.73:1, whereas the control group consumed well-balanced nutrition drinks while maintaining a normal diet. After 3 weeks, K-MMSE, body composition, urine ketone bodies, and physical ability were all evaluated.RESULTS: Urine ketone bodies of all case group subjects were positive, and K-MMSE score was significantly elevated in the case group only (p=0.021). Weight and BMI were elevated in the control group only (p<0.05). Grip strength was elevated in all subjects (p<0.01), and measurements of gait speed and one leg balance were improved only in the case group (p<0.05).CONCLUSIONS: We suggest that adherence to the LCHF diet supplemented with a ketogenic drink could possibly influence cognitive and physical function in the elderly with a high risk factor for dementia. Further, we confirmed the applicability of this dietary intervention in the elderly based on its lack of any side effects or changes in nutritional status.
Aged
;
Alzheimer Disease
;
Body Composition
;
Brain
;
Cognition
;
Dementia
;
Diet
;
Diet, High-Fat
;
Gait
;
Glucose
;
Hand Strength
;
Humans
;
Ketone Bodies
;
Leg
;
Memory
;
Motor Activity
;
Nutritional Status
;
Risk Factors


Result Analysis
Print
Save
E-mail