1.A reviewing for abusing of ketamine.
Journal of Forensic Medicine 2007;23(4):312-315
Ketamine is a noncompetitive NMDA receptor antagonist and comes into being a new problem of drug abuse. It can cause a certain extent of hallucination, which makes ketamine be abused in the casinos. The paper reviews the pharmacological and toxicology characteristic of Ketamine, the possible physiological mechanism and the methods for detecting Ketamine abuse.
Anesthetics, Dissociative/toxicity*
;
Cerebral Cortex/drug effects*
;
Humans
;
Illicit Drugs
;
Ketamine/toxicity*
;
Mental Disorders/chemically induced*
;
Receptors, Dopamine/drug effects*
;
Receptors, N-Methyl-D-Aspartate/drug effects*
;
Substance Abuse Detection/methods*
;
Substance-Related Disorders/prevention & control*
2.Toxicokinetics of ketamine in rabbits.
Ling LIU ; Zhi-Wen WEI ; Juan JIA ; Yu-Jin WANG
Journal of Forensic Medicine 2010;26(5):357-360
OBJECTIVE:
To investigate the toxicokinetics profiles of ketamine and its main metabolite norketamine in rabbits.
METHODS:
The rabbits were administered orally the hydrochloride of ketamine with a dose of 0.15 g/kg. The serum and urine samples were collected before administration and at different time points after drug administration. The concentrations of ketamine and norketamine were determined by GC-NPD and GC-MS. Compartment model and toxicokinetics parameters were simulated and calculated by WinNorLin program. Changes of important vital signs of rabbits were recorded during the experiment.
RESULTS:
The mean serum concentration-time profile of ketamine and norketamine were fitted to a two-compartment open model with first order kinetics. The kinetic equation of ketamine and norketamine were p(t) = 121.760 e(-0.0025t) +0.980 e(-0.002t) +4.579 e(-0.021 t) and p(t) = 640.919 e(-0.03 t) +1.023 e(-0.001 t) +9.784 e (-0.031 t), respectively. The peak time and the peak concentration of ketamine in serum were (40.950 +/- 12.098) min and (9.015 +/- 1.344) microg/mL, respectively. The elimination half-time of ketamine in rabbits was (430.370 +/- 28.436) min. The serum and urine showed a middle relation in concentrations of ketamine during 30-240 min after drug administration. After oral administration ketamine to rabbits, the toxic symptom on the rabbits occurred at 30 min and disappeared after 120 min.
CONCLUSION
The toxicokinetics parameters and kinetic equation of ketamine and norketamine in rabbits may provide the theoretical basis for forensic identification of reasonable specimen collection and inferring the time of oral administration ketamine from the ketamine concentration in serum.
Administration, Oral
;
Anesthetics, Dissociative/toxicity*
;
Animals
;
Blood Pressure/drug effects*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Heart Rate/drug effects*
;
Ketamine/urine*
;
Male
;
Perceptual Disorders/etiology*
;
Rabbits
;
Random Allocation
;
Time Factors