2.Recombinant adenovirus overexpressing nkx2.5 protects H9c2 cells against H2O2-induced apoptosis.
Tao LI ; Kesheng JIANG ; Qin RUAN ; Zhiqiang LIU
Chinese Journal of Biotechnology 2012;28(10):1253-1264
To study the function and potential application of nkx2.5, a critical gene for heart development, we constructed a recombinant adenovirus overexpressing nkx2.5 gene (Ad-Nkx2.5) with the AdEasy system. To evaluate the effect and mechanism of Ad-Nkx2.5 against oxidative injury, the H9c2 myocardial cells were infected with the recombinant adenoviruses Ad-Nkx2.5 or Ad-EGFP, and subsequently exposed to H2O2 to induce apoptosis. The anti-apoptotic potential of Ad-Nkx2.5 was validated by MTT assay for cell viability, Hoechst33342 staining for cellular morphology, and immunoblotting for caspase-3 activity. Ad-Nkx2.5 infection led to an increased survival rate of H9c2 cells and decreased the amount of caspase-3 in an active form. Additionally, overexpression of Nkx2.5 inhibited the release of cytochrome C from the mitochondria into the cytosol. Mechanismic studies showed that Nkx2.5 upregulated bcl-2 gene expression and significantly repressed H2O2-induced expression of bax detected by Real-time PCR. Additionally, H2O2 treatment did not affect the nuclear localization of Nkx2.5. These findings indicate that adenovirus-mediated nkx2.5 gene transfer exerted a protective effect on H9c2 cells against H2O2-induced apoptosis via mitochondrial pathway, and the Nkx2.5-mediated expression modulation of apoptosis-associated genes could be involved in this event.
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Cell Line
;
Genetic Vectors
;
genetics
;
Homeobox Protein Nkx-2.5
;
Homeodomain Proteins
;
biosynthesis
;
genetics
;
Hydrogen Peroxide
;
pharmacology
;
Myocytes, Cardiac
;
cytology
;
Oxidative Stress
;
drug effects
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Rats
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Transcription Factors
;
biosynthesis
;
genetics
;
bcl-2-Associated X Protein
;
metabolism
3.Preparation and identification of polyclonal antibodies against Moraxella catarrhalis UspA1.
Hui WANG ; Bo YANG ; Kesheng ZHAO ; Jiaji LI ; Xin LI ; Mengmeng KONG ; Chunjie GONG ; Yi WANG ; Ye TAO ; Qiu ZHANG ; Zheng HU
Chinese Journal of Biotechnology 2018;34(1):102-109
To prepare polyclonal antibodies (PcAb) against UspA1 of Moraxella catarrhalis (Mc), we used bioinformatic analysis to determine the surface exposed region in this protein that holds the antigen epitopes. Then the corresponding coding sequences for this fragment was artificially synthesized according to the codon usage of Escherichia coli. The gene fragment was then subcloned into the prokaryotic expression vector pET-28a(+) and expressed in E. coli rosseta (DE3), and then the recombinant UspA1-His proteins were purified. Two New Zealand white rabbits were immunized with this protein to prepare antiserum. The resulting PcAb was then purified from the antiserum with Protein A affinity column. The results of fluorescence antibody assay, enzyme linked immunosorbent assay and Western blotting analysis showed that the PcAb could specifically recognize the surface exposed region of UspA1 on Mc. The preparation of the PcAb laid a foundation of further development of rapid detection technique for M. catarrhalis.