1.A safe, stable, and convenient three-dimensional device for high Le Fort I osteotomy
Keisuke SUGAHARA ; Masahide KOYACHI ; Kento ODAKA ; Satoru MATSUNAGA ; Akira KATAKURA
Maxillofacial Plastic and Reconstructive Surgery 2020;42(1):32-
Background:
Le Fort I osteotomy is a highly effective treatment for skeletal jaw deformities and is commonly performed. High Le Fort I osteotomy is a modified surgical procedure performed for improving the depression of the cheeks by setting the osteotomy higher than the conventional Le Fort I osteotomy. Developments in three-dimensional (3D) technology have popularized the use of 3D printers in various institutions, especially in orthognathic surgeries. In this study, we report a safe and inexpensive method of performing a high Le Fort I osteotomy using a novel 3D device and piezosurgery, which prevent tooth root injury without disturbing the operation field for patients with a short midface and long tooth roots.
Results:
A 17-year-old woman presented with facial asymmetry, mandibular protrusion, a short midface, and long tooth roots. We planned high Le Fort I osteotomy and bilateral sagittal split ramus osteotomy. Prevention of damage to the roots of the teeth and the infraorbital nerve and accurate determination of the posterior osteotomy line were crucial for clinical success. Le Fort I osteotomy using 3D devices has been reported previously but were particularly large in size for this case. Additionally, setting the fixing screw of the device was difficult, because of the risk of damage to the roots of the teeth. Therefore, a different surgical technique, other than the conventional Le Fort I osteotomy and 3D device, was required. The left and right parts of the 3D device were fabricated separately, to prevent any interference in the surgical field. Further, the 3D device was designed to accurately cover the bone surface from the piriform aperture to the infra-zygomatic crest with two fixation points (the anterior nasal spine and the piriform aperture), which ensured stabilization of the 3D device. The device is thin and does not interfere with the surgical field. Safe and accurate surgical performance is possible using this device and piezosurgery. The roots of the teeth and the infraorbital nerve were unharmed during the surgery.
Conclusions
This device is considerably smaller than conventional devices and is a simple, low-cost, and efficient method for performing accurate high Le Fort I osteotomy.
2.A safe, stable, and convenient three-dimensional device for high Le Fort I osteotomy
Keisuke SUGAHARA ; Masahide KOYACHI ; Kento ODAKA ; Satoru MATSUNAGA ; Akira KATAKURA
Maxillofacial Plastic and Reconstructive Surgery 2020;42(1):32-
Background:
Le Fort I osteotomy is a highly effective treatment for skeletal jaw deformities and is commonly performed. High Le Fort I osteotomy is a modified surgical procedure performed for improving the depression of the cheeks by setting the osteotomy higher than the conventional Le Fort I osteotomy. Developments in three-dimensional (3D) technology have popularized the use of 3D printers in various institutions, especially in orthognathic surgeries. In this study, we report a safe and inexpensive method of performing a high Le Fort I osteotomy using a novel 3D device and piezosurgery, which prevent tooth root injury without disturbing the operation field for patients with a short midface and long tooth roots.
Results:
A 17-year-old woman presented with facial asymmetry, mandibular protrusion, a short midface, and long tooth roots. We planned high Le Fort I osteotomy and bilateral sagittal split ramus osteotomy. Prevention of damage to the roots of the teeth and the infraorbital nerve and accurate determination of the posterior osteotomy line were crucial for clinical success. Le Fort I osteotomy using 3D devices has been reported previously but were particularly large in size for this case. Additionally, setting the fixing screw of the device was difficult, because of the risk of damage to the roots of the teeth. Therefore, a different surgical technique, other than the conventional Le Fort I osteotomy and 3D device, was required. The left and right parts of the 3D device were fabricated separately, to prevent any interference in the surgical field. Further, the 3D device was designed to accurately cover the bone surface from the piriform aperture to the infra-zygomatic crest with two fixation points (the anterior nasal spine and the piriform aperture), which ensured stabilization of the 3D device. The device is thin and does not interfere with the surgical field. Safe and accurate surgical performance is possible using this device and piezosurgery. The roots of the teeth and the infraorbital nerve were unharmed during the surgery.
Conclusions
This device is considerably smaller than conventional devices and is a simple, low-cost, and efficient method for performing accurate high Le Fort I osteotomy.
3.Maxillary reconstruction using tunneling flap technique with 3D custom-made titanium mesh plate and particulate cancellous bone and marrow graft: a case report
Masayuki TAKANO ; Keisuke SUGAHARA ; Masahide KOYACHI ; Kento ODAKA ; Satoru MATSUNAGA ; Shinya HOMMA ; Shinichi ABE ; Akira KATAKURA ; Takahiko SHIBAHARA
Maxillofacial Plastic and Reconstructive Surgery 2019;41(1):43-
BACKGROUND:
Reconstructive surgery is often required for tumors of the oral and maxillofacial region, irrespective of whether they are benign or malignant, the area involved, and the tumor size. Recently, three-dimensional (3D) models are increasingly used in reconstructive surgery. However, these models have rarely been adapted for the fabrication of custom-made reconstruction materials. In this report, we present a case of maxillary reconstruction using a laboratory-engineered, custom-made mesh plate from a 3D model.CASE PRESENTATION: The patient was a 56-year-old female, who had undergone maxillary resection in 2011 for intraoral squamous cell carcinoma that presented as a swelling of the anterior maxillary gingiva. Five years later, there was no recurrence of the malignant tumor and a maxillary reconstruction was planned. Computed tomography (CT) revealed a large bony defect in the dental-alveolar area of the anterior maxilla. Using the CT data, a 3D model of the maxilla was prepared, and the site of reconstruction determined. A custom-made mesh plate was fabricated using the 3D model (Okada Medical Supply, Tokyo, Japan). We performed the reconstruction using the custom-made titanium mesh plate and the particulate cancellous bone and marrow graft from her iliac bone. We employed the tunneling flap technique without alveolar crest incision, to prevent surgical wound dehiscence, mesh exposure, and alveolar bone loss. Ten months later, three dental implants were inserted in the graft. Before the final crown setting, we performed a gingivoplasty with palate mucosal graft. The patient has expressed total satisfaction with both the functional and esthetic outcomes of the procedure.
CONCLUSION
We have successfully performed a maxillary and dental reconstruction using a custom-made, pre-bent titanium mesh plate.
4.Novel condylar repositioning method for 3D-printed models
Keisuke SUGAHARA ; Yoshiharu KATSUMI ; Masahide KOYACHI ; Yu KOYAMA ; Satoru MATSUNAGA ; Kento ODAKA ; Shinichi ABE ; Masayuki TAKANO ; Akira KATAKURA
Maxillofacial Plastic and Reconstructive Surgery 2018;40(1):4-
BACKGROUND: Along with the advances in technology of three-dimensional (3D) printer, it became a possible to make more precise patient-specific 3D model in the various fields including oral and maxillofacial surgery. When creating 3D models of the mandible and maxilla, it is easier to make a single unit with a fused temporomandibular joint, though this results in poor operability of the model. However, while models created with a separate mandible and maxilla have operability, it can be difficult to fully restore the position of the condylar after simulation. The purpose of this study is to introduce and asses the novel condylar repositioning method in 3D model preoperational simulation. METHODS: Our novel condylar repositioning method is simple to apply two irregularities in 3D models. Three oral surgeons measured and evaluated one linear distance and two angles in 3D models. RESULTS: This study included two patients who underwent sagittal split ramus osteotomy (SSRO) and two benign tumor patients who underwent segmental mandibulectomy and immediate reconstruction. For each SSRO case, the mandibular condyles were designed to be convex and the glenoid cavities were designed to be concave. For the benign tumor cases, the margins on the resection side, including the joint portions, were designed to be convex, and the resection margin was designed to be concave. The distance from the mandibular ramus to the tip of the maxillary canine, the angle created by joining the inferior edge of the orbit to the tip of the maxillary canine and the ramus, the angle created by the lines from the base of the mentum to the endpoint of the condyle, and the angle between the most lateral point of the condyle and the most medial point of the condyle were measured before and after simulations. Near-complete matches were observed for all items measured before and after model simulations of surgery in all jaw deformity and reconstruction cases. CONCLUSIONS: We demonstrated that 3D models manufactured using our method can be applied to simulations and fully restore the position of the condyle without the need for special devices.
Chin
;
Congenital Abnormalities
;
Equidae
;
Glenoid Cavity
;
Humans
;
Jaw
;
Joints
;
Mandible
;
Mandibular Condyle
;
Mandibular Osteotomy
;
Maxilla
;
Methods
;
Oral and Maxillofacial Surgeons
;
Orbit
;
Orthognathic Surgery
;
Osteotomy, Sagittal Split Ramus
;
Surgery, Oral
;
Temporomandibular Joint