1.Risk Factors for Loosening of S2 Alar Iliac Screw: Surgical Outcomes of Adult Spinal Deformity
Yasushi IIJIMA ; Toshiaki KOTANI ; Tsuyoshi SAKUMA ; Keita NAKAYAMA ; Tsutomu AKAZAWA ; Shunji KISHIDA ; Yuta MURAMATSU ; Yu SASAKI ; Keisuke UENO ; Tomoyuki ASADA ; Kosuke SATO ; Shohei MINAMI ; Seiji OHTORI
Asian Spine Journal 2020;14(6):864-871
Methods:
Cases of 50 patients with ASD who underwent long spinal fusion (>9 levels) with S2AI screws were retrospectively reviewed. Loosening of S2AI screws and S1 pedicle screws and bone fusion at the level of L5–S1 at 2 years after surgery were investigated using computed tomography. In addition, risk factors for loosening of S2AI screws were determined in patients with ASD.
Results:
At 2 years after surgery, 33 cases (66%) of S2AI screw loosening and six cases (12%) of S1 pedicle screw loosening were observed. In 40 of 47 cases (85%), bone fusion at L5–S1 was found. Pseudarthrosis at L5–S1 was not significantly associated with S2AI screw loosening (19.3% vs. 6.3%, p=0.23), but significantly higher in patients with S1 screw loosening (83.3% vs. 4.9%, p<0.001). On multivariate logistic regression analyses, high upper instrumented vertebra (UIV) level (T5 or above) (odds ratio [OR], 4.4; 95% confidence interval [CI], 1.0–18.6; p=0.045) and obesity (OR, 11.4; 95% CI, 1.2–107.2; p=0.033) were independent risk factors for S2AI screw loosening.
Conclusions
High UIV level (T5 or above) and obesity were independent risk factors for S2AI screw loosening in patients with lumbosacral fixation in surgery for ASD. The incidence of lumbosacral fusion is associated with S1 screw loosening, but not S2AI screw loosening.
2.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
3.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
4.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
5.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
6.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.