1.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
2.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
3.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
4.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
6.Spinal Schwannoma Classification Based on the Presumed Origin With Preoperative Magnetic Resonance Images
Tae-Shin KIM ; Jae Hee KUH ; Junhoe KIM ; Woon Tak YUH ; Junghoon HAN ; Chang-Hyun LEE ; Chi Heon KIM ; Chun Kee CHUNG
Neurospine 2024;21(3):890-902
Objective:
Classification guides the surgical approach and predicts prognosis. However, existing classifications of spinal schwannomas often result in a high ‘unclassified’ rate. Here, we aim to develop a new comprehensive classification for spinal schwannomas based on their presumed origin. We compared the new classification with the existing classifications regarding the rate of ‘unclassified’. Finally, we assessed the surgical strategies, outcomes, and complications according to each type of the new classification.
Methods:
A new classification with 9 types was created by analyzing the anatomy of spinal nerves and the origin of significant tumor portions and cystic components in preoperative magnetic resonance images. A total of 482 patients with spinal schwannomas were analyzed to compare our new classification with the existing classifications. We defined ‘unclassified’ as the inability to classify a patient with spinal schwannoma using the classification criteria. Surgical approaches and outcomes were also aligned with our new classification.
Results:
Our classification uniquely reported no ‘unclassified’ cases, indicating full applicability. Also, the classification has demonstrated usefulness in predicting the surgical outcome with the approach planned. Gross total removal rates reached 88.0% overall, with type 1 and type 2 tumors at 95.3% and 96.0% respectively. The approach varied with tumor type, with laminectomy predominantly used for types 1, 2, and 9, and facetectomy with posterior fixation used for type 3 tumors.
Conclusion
The new classification for spinal schwannomas based on presumed origin is applicable to all spinal schwannomas. It could help plan a surgical approach and predict its outcome, compared with existing classifications.
7.Spinal Schwannoma Classification Based on the Presumed Origin With Preoperative Magnetic Resonance Images
Tae-Shin KIM ; Jae Hee KUH ; Junhoe KIM ; Woon Tak YUH ; Junghoon HAN ; Chang-Hyun LEE ; Chi Heon KIM ; Chun Kee CHUNG
Neurospine 2024;21(3):890-902
Objective:
Classification guides the surgical approach and predicts prognosis. However, existing classifications of spinal schwannomas often result in a high ‘unclassified’ rate. Here, we aim to develop a new comprehensive classification for spinal schwannomas based on their presumed origin. We compared the new classification with the existing classifications regarding the rate of ‘unclassified’. Finally, we assessed the surgical strategies, outcomes, and complications according to each type of the new classification.
Methods:
A new classification with 9 types was created by analyzing the anatomy of spinal nerves and the origin of significant tumor portions and cystic components in preoperative magnetic resonance images. A total of 482 patients with spinal schwannomas were analyzed to compare our new classification with the existing classifications. We defined ‘unclassified’ as the inability to classify a patient with spinal schwannoma using the classification criteria. Surgical approaches and outcomes were also aligned with our new classification.
Results:
Our classification uniquely reported no ‘unclassified’ cases, indicating full applicability. Also, the classification has demonstrated usefulness in predicting the surgical outcome with the approach planned. Gross total removal rates reached 88.0% overall, with type 1 and type 2 tumors at 95.3% and 96.0% respectively. The approach varied with tumor type, with laminectomy predominantly used for types 1, 2, and 9, and facetectomy with posterior fixation used for type 3 tumors.
Conclusion
The new classification for spinal schwannomas based on presumed origin is applicable to all spinal schwannomas. It could help plan a surgical approach and predict its outcome, compared with existing classifications.
8.Spinal Schwannoma Classification Based on the Presumed Origin With Preoperative Magnetic Resonance Images
Tae-Shin KIM ; Jae Hee KUH ; Junhoe KIM ; Woon Tak YUH ; Junghoon HAN ; Chang-Hyun LEE ; Chi Heon KIM ; Chun Kee CHUNG
Neurospine 2024;21(3):890-902
Objective:
Classification guides the surgical approach and predicts prognosis. However, existing classifications of spinal schwannomas often result in a high ‘unclassified’ rate. Here, we aim to develop a new comprehensive classification for spinal schwannomas based on their presumed origin. We compared the new classification with the existing classifications regarding the rate of ‘unclassified’. Finally, we assessed the surgical strategies, outcomes, and complications according to each type of the new classification.
Methods:
A new classification with 9 types was created by analyzing the anatomy of spinal nerves and the origin of significant tumor portions and cystic components in preoperative magnetic resonance images. A total of 482 patients with spinal schwannomas were analyzed to compare our new classification with the existing classifications. We defined ‘unclassified’ as the inability to classify a patient with spinal schwannoma using the classification criteria. Surgical approaches and outcomes were also aligned with our new classification.
Results:
Our classification uniquely reported no ‘unclassified’ cases, indicating full applicability. Also, the classification has demonstrated usefulness in predicting the surgical outcome with the approach planned. Gross total removal rates reached 88.0% overall, with type 1 and type 2 tumors at 95.3% and 96.0% respectively. The approach varied with tumor type, with laminectomy predominantly used for types 1, 2, and 9, and facetectomy with posterior fixation used for type 3 tumors.
Conclusion
The new classification for spinal schwannomas based on presumed origin is applicable to all spinal schwannomas. It could help plan a surgical approach and predict its outcome, compared with existing classifications.
9.Spinal Schwannoma Classification Based on the Presumed Origin With Preoperative Magnetic Resonance Images
Tae-Shin KIM ; Jae Hee KUH ; Junhoe KIM ; Woon Tak YUH ; Junghoon HAN ; Chang-Hyun LEE ; Chi Heon KIM ; Chun Kee CHUNG
Neurospine 2024;21(3):890-902
Objective:
Classification guides the surgical approach and predicts prognosis. However, existing classifications of spinal schwannomas often result in a high ‘unclassified’ rate. Here, we aim to develop a new comprehensive classification for spinal schwannomas based on their presumed origin. We compared the new classification with the existing classifications regarding the rate of ‘unclassified’. Finally, we assessed the surgical strategies, outcomes, and complications according to each type of the new classification.
Methods:
A new classification with 9 types was created by analyzing the anatomy of spinal nerves and the origin of significant tumor portions and cystic components in preoperative magnetic resonance images. A total of 482 patients with spinal schwannomas were analyzed to compare our new classification with the existing classifications. We defined ‘unclassified’ as the inability to classify a patient with spinal schwannoma using the classification criteria. Surgical approaches and outcomes were also aligned with our new classification.
Results:
Our classification uniquely reported no ‘unclassified’ cases, indicating full applicability. Also, the classification has demonstrated usefulness in predicting the surgical outcome with the approach planned. Gross total removal rates reached 88.0% overall, with type 1 and type 2 tumors at 95.3% and 96.0% respectively. The approach varied with tumor type, with laminectomy predominantly used for types 1, 2, and 9, and facetectomy with posterior fixation used for type 3 tumors.
Conclusion
The new classification for spinal schwannomas based on presumed origin is applicable to all spinal schwannomas. It could help plan a surgical approach and predict its outcome, compared with existing classifications.
10.Spinal Schwannoma Classification Based on the Presumed Origin With Preoperative Magnetic Resonance Images
Tae-Shin KIM ; Jae Hee KUH ; Junhoe KIM ; Woon Tak YUH ; Junghoon HAN ; Chang-Hyun LEE ; Chi Heon KIM ; Chun Kee CHUNG
Neurospine 2024;21(3):890-902
Objective:
Classification guides the surgical approach and predicts prognosis. However, existing classifications of spinal schwannomas often result in a high ‘unclassified’ rate. Here, we aim to develop a new comprehensive classification for spinal schwannomas based on their presumed origin. We compared the new classification with the existing classifications regarding the rate of ‘unclassified’. Finally, we assessed the surgical strategies, outcomes, and complications according to each type of the new classification.
Methods:
A new classification with 9 types was created by analyzing the anatomy of spinal nerves and the origin of significant tumor portions and cystic components in preoperative magnetic resonance images. A total of 482 patients with spinal schwannomas were analyzed to compare our new classification with the existing classifications. We defined ‘unclassified’ as the inability to classify a patient with spinal schwannoma using the classification criteria. Surgical approaches and outcomes were also aligned with our new classification.
Results:
Our classification uniquely reported no ‘unclassified’ cases, indicating full applicability. Also, the classification has demonstrated usefulness in predicting the surgical outcome with the approach planned. Gross total removal rates reached 88.0% overall, with type 1 and type 2 tumors at 95.3% and 96.0% respectively. The approach varied with tumor type, with laminectomy predominantly used for types 1, 2, and 9, and facetectomy with posterior fixation used for type 3 tumors.
Conclusion
The new classification for spinal schwannomas based on presumed origin is applicable to all spinal schwannomas. It could help plan a surgical approach and predict its outcome, compared with existing classifications.

Result Analysis
Print
Save
E-mail