1.Phosphorylation of chicken protein tyrosine phosphatase 1 by casein kinase II in vitro.
Eun Joo JUNG ; Kee Ryeon KANG ; Yoon Se KANG
Experimental & Molecular Medicine 1997;29(4):229-233
The phosphorylation and dephosphorylation of proteins on tyrosyl residues are key regulatory mechanisms of cell growth and signal transduction and are controlled by opposing activities of protein tyrosine kinases and phosphotyrosyl phosphatases (PTPs). We have previously cloned and characterized a nontransmembrane chicken protein tyrosine phosphatase 1 (CPTP1) similar to human placental PTP1B (HPTP1B). CPTP1 contains several phosphorylation sequence motifs (S/T-X-X-D/E) for casein kinase II (CKII), [(I > E > V)-Y-(E > G)-(E > D > P > N)-(I/V > L)] for p56(1ck), and (P-E-S-P) for MAP kinase. To examine whether phosphatase activity of CPTP1 could be controlled by phosphorylation, CPTP1 and HPTP1B fusion proteins purified from E. coil were subjected to the in vitro phosphorylation by CKII. Phosphoamino acid analysis revealed that CPTP1 was phosphorylated on both serine and threonine residues by CKII in vitro. In addition, the degree of the phosphorylation of CPTP1 by CKII was shown to be five times higher than that of HPTP1B. Phosphorylation on both serine and threonine residues of CPTP1 in vitro results in an inhibition of its phosphatase activity. This result suggests that phosphorylation of CPTP1 and HPTP1B by CKII might be implicated in the regulation of their catalytic activities in the cell.
Casein Kinase II*
;
Casein Kinases*
;
Caseins*
;
Chickens*
;
Clone Cells
;
Humans
;
Phosphoric Monoester Hydrolases
;
Phosphorylation*
;
Phosphotransferases
;
Protein Tyrosine Phosphatases*
;
Protein-Tyrosine Kinases
;
Serine
;
Signal Transduction
;
Threonine
2.A simple protocol of DNA sequencing with 10% formamide for dissolving G/C compression.
Kee Ryeon KANG ; Yeon Woong KIM
Experimental & Molecular Medicine 1997;29(4):235-237
Formamide has been widely used in urea/polyacrylamide gel to solve the compression problems that are occasionally found during the DNA sequencing of G/C rich regions. In this study, however, 10% formamide was added in annealing solution in stead of adding to the gel. The compressions were unfolded efficiently with a more rapid annealing reaction on ice in the presence of 10% formamide.
DNA*
;
Ice
;
Sequence Analysis, DNA*
3.Regulation of chicken protein tyrosine phosphatase 1 and human protein tyrosine phosphatase 1B activity by casein kinase II- and p56lck-mediated phosphorylation.
Kee Ryeon KANG ; Choong Won KIM
Experimental & Molecular Medicine 2000;32(1):47-51
Protein tyrosine phosphorylation and dephosphorylation are important in the regulation of cell proliferation and signaling cascade. In order to examine whether phosphatase activity of CPTP1 and HPTP1B, typical nontransmembrane protein tyrosine phosphatase, could be controlled by phosphorylation, affinity-purified PTPs were phosphorylated by CKII and p56lck in vitro. Phosphoamino acid analysis revealed that CPTP1 was phosphorylated on both serine and threonine residues by CKII, and tyrosine residue by p56lck. Phosphatase activity of CPTP1 was gradually increased by three-fold concomitant with phosporylation by CKII. Phosphorylation of HPTP1B by CKII resulted in quick two-fold enhancement of its phosphatase activity within 5 min of incubation and remained in that state. In the presence of CKII inhibitor, heparin or poly(Glu.Tyr), both phosphorylation and enhancement of phosphatase activity of CPTP1 and HPTP1B were mostly blocked. p56lck catalyzed tyrosine phosphorylation of CPTP1 and HPTP1B was only observed by inhibiting the intrinsic tyrosine phosphatase activity. Taken together, these results indicate that CPTP1 or HPTP1B possesses a capability to regulate its phosphatase activity through phosphorylation processes and may participate in the cellular signal cascades.
Adenosine Triphosphate/metabolism
;
Animal
;
Chickens
;
Dose-Response Relationship, Drug
;
Heparin/pharmacology
;
Human
;
Hydrogen Peroxide/pharmacology
;
Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism*
;
Peptides/pharmacology
;
Phosphorus Radioisotopes/diagnostic use
;
Phosphorylation/drug effects
;
Protein-Serine-Threonine Kinases/metabolism*
;
Protein-Tyrosine-Phosphatase/metabolism*
;
Tyrosine/metabolism
;
Vanadates/pharmacology
4.Protein kinase CK2 phosphorylates and interacts with deoxyhypusine synthase in HeLa cells.
Experimental & Molecular Medicine 2003;35(6):556-564
Deoxyhypusine is a modified lysine and formed posttranslationally to be the eukaryotic initiation factor eIF5A by deoxyhypusine synthase, employing spermidine as butylamine donor. Subsequent hydroxylation of this deoxyhypusine-containing intermediate completes the maturation of eIF5A. The previous report showed that deoxyhypusine synthase was phosphorylated by PKC in vivo and the association of deoxyhypusine synthase with PKC in CHO cells was PMA-, and Ca(2+)/phospholipid-dependent. We have extended study on the phosphorylation of deoxyhypusine synthase by protein kinase CK2 in order to define its role on the regulation of eIF5A in the cell. The results showed that deoxyhypusine synthase was phosphorylated by CK2 in vivo as well as in vitro. Endogenous CK2 in HeLa cells and the cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced or decreased by the addition of CK2 effectors such as polylysine, heparin, and poly(Glu, Tyr) 4:1. Phosphoamino acid analysis of this enzyme revealed that deoxyhypusine synthase is mainly phosphorylated on threonine residue and less intensely on serine. These results suggest that phosphorylation of deoxyhypusine synthase is CK2-dependent cellular event as well as PKC-mediated effect. However, there were no observable changes in enzyme activity between the phosphorylated and unphosphorylated forms of deoxyhypusine synthase. Taken together, besides its established function in hypusine modification involving eIF5A substrate, deoxyhypusine synthase and its phosphorylation modification may have other independent cellular functions because of versatile roles of deoxyhypusine synthase.
Animals
;
Casein Kinase II
;
Cell Line
;
Cricetinae
;
Hela Cells
;
Humans
;
Mice
;
Oxidoreductases Acting on CH-NH Group Donors/genetics/*metabolism
;
Phosphoamino Acids/metabolism
;
Phosphorylation
;
Protein Binding
;
Protein-Serine-Threonine Kinases/*metabolism
;
Recombinant Proteins/genetics/metabolism
5.A case of insulinoma localized by endoscopic ultrasonography.
Jae Yong CHIN ; Cheal Whan LEE ; Jae Young KANG ; Hye Ryeon KIM ; Kee Up LEE ; Gi Soo KIM ; Deok Jong HAN ; In Cheol LEE ; S W PARK
Journal of Korean Society of Endocrinology 1993;8(2):197-202
No abstract available.
Endosonography*
;
Insulinoma*
6.Effect of serum and hydrogen peroxide on the Ca2+/calmodulin-dependent phosphorylation of eukaryotic elongation factor 2(eEF-2) in Chinese hamster ovary cells.
Experimental & Molecular Medicine 2001;33(4):198-204
Eukaryotic elongation factor eEF-2 mediates regulatory steps important for the overall regulation of mRNA translation in mammalian cells and is activated by variety of cellular conditions and factors. In this study, eEF-2 specific, Ca2+/CaM-dependent protein kinase III (CaM PK III), also called eEF-2 kinase, was examined under oxidative stress and cell proliferation state using CHO cells. The eEF-2 kinase activity was determined in the kinase buffer containing Ca2+ and CaM in the presence of eEF-2 and [gamma-32P] ATP. The eEF-2 kinase activity in cell lysates was completely dependent upon Ca2+ and CaM. Phosphorylation of eEF-2 was clearly identified in proliferating cells, but not detectable in CHO cells arrested in their growth by serum deprivation. The content of the eEF-2 protein, however, was equivalent in both cells. Using a phosphorylation state-specific antibody, we show that oxidant such as H2O2, which triggers a large influx of Ca2+, dramatically enhances the phosphorylation of eEF-2. In addition, H2O2-induced eEF-2 phosphorylation is dependent on Ca2+ and CaM, but independent of protein kinase C. In addition, okadaic acid inhibits phosphoprotein phosphatase 2A(PP2A)-mediated eEF-2 dephosphorylation. These results may provide a possible link between the elevation of intracellular Ca2+ and cell division and suggest that phosphorylation of eEF-2 is sensitive cellular reflex on stimuli that induces intracellular Ca2+ flux.
Animal
;
CHO Cells
;
Ca(2+)-Calmodulin Dependent Protein Kinase/*metabolism
;
Cell Division
;
Cells, Cultured
;
Comparative Study
;
Cytosol/enzymology
;
Egtazic Acid/pharmacology
;
Hamsters
;
Human
;
Hydrogen Peroxide/*pharmacology
;
Mice
;
Okadaic Acid/pharmacology
;
Oxidants/*pharmacology
;
Peptide Elongation Factors/metabolism
;
Phosphoprotein Phosphatase/metabolism
;
Phosphorylation
;
Polyethylene Glycols/pharmacology
;
Trifluoperazine/pharmacology
7.Characterization of yeast deoxyhypusine synthase: PKC-dependent phosphorylation in vitro and functional domain identification.
Experimental & Molecular Medicine 1999;31(4):210-216
The biosynthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)-lysine] occurs in the eIF-5A precursor protein through two step posttranslational modification involving deoxyhypusine synthase which catalyzes transfer of the butylamine moiety of spermidine to the epsilon-amino group of a designated lysine residue and subsequent hydroxylation of this intermediate. This enzyme is exclusively required for cell viability and growth of yeast (Park, M.H. et al., J. Biol. Chem. 273: 1677-1683, 1998). In an effort to understand structure-function relationship of deoxyhypusine synthase, posttranslational modification(s) of the enzyme by protein kinases were carried out for a possible cellular modulation of this enzyme. And also twelve deletion mutants were constructed, expressed in E. coli system, and enzyme activities were examined. The results showed that deoxyhypusine synthase was phosphorylated by PKC in vitro but not by p56lck and p60c-src. Treatment with PMA specifically increased the relative phosphorylation of the enzyme supporting PKC was involved. Phosphoamino acid analysis of this enzyme revealed that deoxyhypusine synthase is mostly phosphorylated on serine residue and weakly on threonine. Removal of Met1-Glu10 (deltaMet1-Glu10) residues from amino terminal showed no effect on the catalytic activity but further deletion (deltaMet1-Ser20) caused loss of enzyme activity. The enzyme with internal deletion, deltaGln197-Asn212 (residues not present in the human enzyme) was found to be inactive. Removal of 5 residues from carboxyl terminal, deltaLys383-Asn387, retained only slight activity. These results suggested that deoxyhypusine synthase is substrate for PKC dependent phosphorylation and requires most of the polypeptide chains for enzyme activity except the first 15 residues of N-terminal despite of N- and C-terminal residues of the enzyme consist of variable regions. Copyright 2000 Academic Press.
Amine Oxidoreductases/metabolism*
;
Amine Oxidoreductases/genetics
;
Amino Acid Motifs
;
Amino Acid Sequence
;
Escherichia coli/genetics
;
Fungal Proteins/metabolism*
;
Fungal Proteins/genetics
;
Human
;
Molecular Sequence Data
;
NAD/metabolism
;
Phosphorylation
;
Promoter Regions (Genetics)
;
Protein Kinase C/metabolism*
;
Recombinant Proteins/metabolism
;
Recombinant Proteins/genetics
;
Sequence Deletion
;
Sequence Homology, Amino Acid
;
Threonine/metabolism
;
Yeasts/enzymology
8.Periocular Allergic Contact Dermatitis Associated with the Use of Ofloxacin Ophthalmic Ointment: A Case Report.
Jeong Won JO ; Hae Bong JEONG ; Young Bin SHIN ; Kee Ryeon KANG ; Chi Yeon KIM
Korean Journal of Dermatology 2018;56(10):624-627
Allergic contact dermatitis is an inflammatory condition associated with periorbital erythema, edema, and pruritus. The periorbital skin is relatively thin compared with the skin over other facial areas; therefore, it is vulnerable to allergen penetration and may show a variety of cutaneous manifestations. Recently, vision enhancement surgery is a widely performed procedure, and the prevalence of senile cataract and glaucoma is increasing. The prevalence of periocular allergic contact dermatitis is increasing secondary to the growing use of topical ophthalmic medications. Several studies in Korea have reported periocular allergic contact dermatitis secondary to the use of topical ophthalmic medications including latanoprost (Latano®), fluorometholone (Tolon®), polymyxin B (Terramycin®), atropine sulfate (Atropine®), neomycin sulfate (Cambison®), and befunolol hydrochloride (Bentos®), among others. However, ofloxacin (Effexin®)-induced allergic contact dermatitis has not been reported in the domestic and/or foreign literature. We report a case of periocular allergic contact dermatitis secondary to the use of ofloxacin ophthalmic ointment.
Atropine
;
Cataract
;
Dermatitis, Allergic Contact*
;
Edema
;
Erythema
;
Fluorometholone
;
Glaucoma
;
Korea
;
Neomycin
;
Ofloxacin*
;
Polymyxin B
;
Prevalence
;
Pruritus
;
Skin
9.Cigarette Smoke Extract-induced Reduction in Migration and Contraction in Normal Human Bronchial Smooth Muscle Cells.
Chul Ho YOON ; Hye Jin PARK ; Young Woo CHO ; Eun Jin KIM ; Jong Deog LEE ; Kee Ryeon KANG ; Jaehee HAN ; Dawon KANG
The Korean Journal of Physiology and Pharmacology 2011;15(6):397-403
The proliferation, migration, cytokine release, and contraction of airway smooth muscle cells are key events in the airway remodeling process that occur in lung disease such as asthma, chronic obstruction pulmonary disease, and cancer. These events can be modulated by a number of factors, including cigarette smoke extract (CSE). CSE-induced alterations in the viability, migration, and contractile abilities of normal human airway cells remain unclear. This study investigated the effect of CSE on cell viability, migration, tumor necrosis factor (TNF)-alpha secretion, and contraction in normal human bronchial smooth muscle cells (HBSMCs). Treatment of HBSMCs with 10% CSE induced cell death, and the death was accompanied by the generation of reactive oxygen species (ROS). CSE-induced cell death was reduced by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, CSE reduced the migration ability of HBSMCs by 75%. The combination of NAC with CSE blocked the CSE-induced reduction of cell migration. However, CSE had no effect on TNF-alpha secretion and NF-kappaB activation. CSE induced an increase in intracellular Ca2+ concentration in 64% of HBSMCs. CSE reduced the contractile ability of HBSMCs, and the ability was enhanced by NAC treatment. These results demonstrate that CSE treatment induces cell death and reduces migration and contraction by increasing ROS generation in normal HBSMCs. These results suggest that CSE may induce airway change through cell death and reduction in migration and contraction of normal HBSMCs.
Acetylcysteine
;
Airway Remodeling
;
Asthma
;
Bronchioles
;
Cell Death
;
Cell Movement
;
Cell Survival
;
Contracts
;
Emigration and Immigration
;
Humans
;
Lung Diseases
;
Muscle, Smooth
;
Myocytes, Smooth Muscle
;
NF-kappa B
;
Reactive Oxygen Species
;
Smoke
;
Tobacco Products
;
Tumor Necrosis Factor-alpha
10.Deoxyhypusine synthase is phosphorylated by protein kinase C in vivo as well as in vitro.
Kee Ryeon KANG ; Jee Sook KIM ; Soo Il CHUNG ; Myung Hee PARK ; Yeon Woong KIM ; Dong Kwon LIM ; So Young LEE
Experimental & Molecular Medicine 2002;34(6):489-495
Deoxyhypusine synthase catalyzes the first step in the posttranslational synthesis of an unusual amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF-5A) precursor protein. We earlier observed that yeast recombinant deoxyhypusine synthase was phosphorylated by protein kinase C (PKC) in vitro (Kang and Chung, 1999) and the phosphorylation rate was synergistically increased to a 3.5-fold following treatment with phosphatidylserine (P.Ser)/diacylglycerol (DAG)/ Ca2+, suggesting a possible involvement of PKC. We have extended study on the phosphorylation of deoxyhypusine synthase in vivo in different cell lines in order to define its role on the regulation of eIF5A in the cell. Deoxyhypusine synthase was found to be phosphorylated by endogenous kinases in CHO, NIH3T3, and chicken embryonic cells. The highest degree of phosphorylation was found in CHO cells. Moreover, phosphorylation of deoxyhypusine synthase in intact CHO cells was revealed and the expression of phosphorylated deoxyhypusine synthase was significantly diminished by diacyl ethylene glycol (DAEG), a PKC inhibitor, and enhanced by phorbol 12-myristate 13-acetate (PMA) or Ca2+/DAG. Endogenous PKC in CHO cell and cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced by PMA or Ca2+ plus DAG. Close association of PKC with deoxyhypusine synthase in the CHO cells was evident in the immune coprecipitation and was PMA-, and Ca2+/phospholipiddependent. These results suggest that phosphorylation of deoxyhypusine synthase was PKC-dependent cellular event and open a path for possible regulation in the interaction with eIF5A precursor for hypusine synthesis.
Amine Oxidoreductases/*metabolism
;
Animals
;
Cell Line
;
Chick Embryo
;
Female
;
Hamsters
;
Mice
;
Phosphorylation
;
Protein Binding
;
Protein Kinase C/antagonists & inhibitors/*metabolism