1.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
2.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
3.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
4.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
5.Anatomical Importance Between Neural Structure and Bony Landmark in Neuroventral Decompression for Posterior Endoscopic Cervical Discectomy
Xin WANG ; Tao HU ; Chaofan QIN ; Bo LEI ; Mingxin CHEN ; Ke MA ; Qingyan LONG ; Qingshuai YU ; Si CHENG ; Zhengjian YAN
Neurospine 2025;22(1):286-296
Objective:
This study aims to investigate the anatomical relationship among the nerve roots, intervertebral space, pedicles, and intradural rootlets of the cervical spine for improving operative outcomes and exploring neuroventral decompression approach in posterior endoscopic cervical discectomy (PECD).
Methods:
Cervical computed tomography myelography imaging data from January 2021 to May 2023 were collected, and the RadiAnt DICOM Viewer Software was employed to conduct multiplane reconstruction. The following parameters were recorded: width of nerve root (WN), nerve root-superior pedicle distance (NSPD), nerve root-inferior pedicle distance (NIPD), and the relationship between the intervertebral space and the nerve root (shoulder, anterior, and axillary). Additionally, the descending angles between the spinal cord and the ventral (VRA) and dorsal (DRA) rootlets were measured.
Results:
The WN showed a gradual increase from C4 to C7, with measurements notably larger in men compared to women. The NSPD decreased gradually from the C2–3 to the C5–6 levels. However, the NIPD showed an opposite level-related change, notably larger than the NSPD at the C4–5, C5–6, and C7–T1 levels. Furthermore, significant differences in NIPD were observed between different age groups and genders. The incidence of the anterior type exhibited a gradual decrease from the C2–3 to the C5–6 levels. Conversely, the axillary type exhibited an opposite level-related change. Additionally, the VRA and DRA decreased as the level descended, with measurements significantly larger in females.
Conclusion
A prediction of the positional relationship between the intervertebral space and the nerve root is essential for the direct neuroventral decompression in PECD to avoid damaging the neural structures. The axillary route of the nerve root offers a safer and more effective pathway for performing direct neuroventral decompression compared to the shoulder approach.
6.Research progress on the impact of lipid metabolism on endometrial receptivity and embryo implantation
Li-Na MA ; Ying QIN ; Ke-Hua WANG ; Cong-Hui PANG ; Li-Ge LU ; Wen-Xian YUAN ; Duo-Jia ZHANG ; Xiao-Ke WU
Medical Journal of Chinese People's Liberation Army 2024;49(9):1088-1093
Lipids,including fats(triglycerides)and lipoids(phospholipids and sterols),not only serve as an energy source for the body but also play a pivotal role throughout the reproductive process,particularly in the establishment and maintenance of early pregnancy.This encompasses the regulate of early embryonic development and uterine tolerance,and the facilitation of embryo implantation.Given the diversity of lipids,this review focuses on extensively studied lipid mediators such as polyunsaturated fatty acids,endocannabinoids,prostaglandins,lysophosphatidic acid,sphingolipids and steroid hormones.It systematically elaborates on the regulatory effects of fatty acid,phospholipid,and cholesterol metabolism on the formation of endometrial receptivity and embryo implantation,as well as the potential underlying mechanisms.The review aims to provide new insights and feasible intervention approaches for predicting and improving the outcomes of natural pregnancy and/or assisted reproductive technology.
7.Clinical features and genetic analysis of 17 Chinese pedigrees affected with X-linked intellectual disability
Yan LI ; Litao QIN ; Ke YANG ; Xin CHEN ; Hongjie ZHU ; Luya MI ; Yaoping WANG ; Xinrui MA ; Shixiu LIAO
Chinese Journal of Medical Genetics 2024;41(5):533-539
Objective:To analyze the clinical features and genetic etiology of 17 Chinese pedigrees affected with X-linked intellectual disability (XLID).Methods:Seventeen pedigrees affected with unexplained intellectual disability which had presented at Henan Provincial People′s Hospital from May 2021 to May 2023 were selected as the study subjects. Clinical data of the probands and their pedigree members were collected. Trio-whole exome sequencing (Trio-WES), Sanger sequencing and X chromosome inactivation (XCI) analysis were carried out. Pathogenicity of candidate variants was predicted based on the guidelines from the American College of Medical Genetics and Genomics and co-segregation analysis.Results:The 17 probands, including 9 males and 8 females with an age ranging from 0.6 to 8 years old, had all shown mental retardation and developmental delay. Fourteen variants were detected by genetic testing, which included 4 pathogenic variants ( MECP2: c. 502C>T, MECP2: c. 916C>T/c.806delG, IQSEC2: c.1417G>T), 4 likely pathogenic variants ( MECP2: c. 1157_1197del/c.925C>T, KDM5C: c. 2128A>T, SLC6A8: c. 1631C>T) and 6 variants of uncertain significance ( KLHL15: c. 26G>C, PAK3: c. 970A>G/c.1520G>A, GRIA3: c. 2153C>G, TAF1: c. 2233T>G, HUWE1: c. 10301T>A). The PAK3: c.970A>G, GRIA3: c. 2153C>G and TAF1: c. 2233T>G variants were considered as the genetic etiology for pedigrees 12, 14 and 15 by co-segregation analysis, respectively. The proband of pedigree 13 was found to have non-random XCI (81: 19). Therefore, the PAK3: c. 1520G>A variant may underlie its pathogenesis. Conclusion:Trio-WES has attained genetic diagnosis for the 17 XLID pedigrees. Sanger sequencing and XCI assay can provide auxiliary tests for the diagnosis of XLID.
8. Influence of quercetin on aging of bone marrow mesenchymal stem cells induced by microgravity
Yu-Tian YANG ; Ying-Ying XUAN ; Yu-Tian YANG ; Ying-Ying XUAN ; Yu-Hai GAO ; Long-Fei WANG ; Han-Qin TANG ; Zhi-Hui MA ; Liang LI ; Yi WU ; Ke-Ming CHEN ; Yu-Tian YANG ; Ying-Ying XUAN ; Yu-Hai GAO ; Long-Fei WANG ; Han-Qin TANG ; Zhi-Hui MA ; Liang LI ; Yi WU ; Ke-Ming CHEN
Chinese Pharmacological Bulletin 2024;40(1):38-45
Aim To investigate the effect of quercetin on the aging model of bone marrow mesenchymal stem cells established under microgravity. Methods Using 3D gyroscope, a aging model of bone marrow mesenchymal stem cells was constructed, and after receiving quercetin and microgravity treatment, the anti-aging effect of the quercetin was evaluated by detecting related proteins and oxidation indexes. Results Compared to the control group, the expressions of age-related proteins p21, pi6, p53 and RB in the microgravity group significantly increased, while the expressions of cyclin D1 and lamin B1 significantly decreased, with statistical significance (P<0.05). In the microgravity group, mitochondrial membrane potential significantly decreased (P<0.05), ROS accumulation significantly increased (P <0.05), SOD content significantly decreased and MDA content significantly increased (P<0.05). Compared to the microgravity group, the expressions of age-related proteins p21, pi6, p53 and RB in the quercetin group significantly decreased, while the expressions of cyclin D1 and lamin B1 significantly increased, with statistical significance (P<0.05). In the quercetin group, mitochondrial membrane potential significantly increased (P<0.05), ROS accumulation significantly decreased (P<0.05), SOD content significantly increased and MDA content significantly decreased (P<0.05). Conclusions Quercetin can resist oxidation, protect mitochondrial function and normal cell cycle, thus delaying the aging of bone marrow mesenchymal stem cells induced by microgravity.
9.The value of a machine learning-based biparametric MRI radiomics model in predicting clinically significant prostate cancer in the transitional zone
Lu LI ; Xu YAN ; Ke MA ; Yuting WANG ; Qin JIN ; Yiqi PAN ; Qi SUN ; Xiaoli MAI
Journal of Practical Radiology 2024;40(11):1837-1842
Objective To evaluate the value of a machine learning-based biparametric magnetic resonance imaging(bpMRI)radiomics model in predicting clinically significant prostate cancer(csPCa)in the transitional zone.Methods A retrospective analysis was con-ducted on 507 cases in two medical centers.All patients underwent prostate MRI examinations before surgery,with complete patho-logical data.The case distribution was as follows:256 cases of csPCa,97 cases of clinically insignificant prostate cancer(ciPCa),and 154 cases of benign prostatic hyperplasia(BPH).Using the R language,the data from Center One was randomly divided into training and test groups at a ratio of 7∶3,and the data from Center Two as an independent external validation group.The image features from T2 WI and diffusion weighted imaging(DWI)were extracted,and the least absolute shrinkage and selection operator(LASSO)was used to reduce dimensionality and filter features.Two datasets were constructed based on T2 WI features alone and combined T2 WI and DWI features.Six prediction models were established using random forest(RF),logistic regression(LR),and support vector machine(SVM).The efficacy of six models of T2 WI features and combined T2 WI and DWI features in the diagnosis of prostate dis-eases through receiver operating characteristic(ROC)curve,area under the curve(AUC),and decision curve analysis(DCA)were compared and evaluated.Results In the training group,feature screening identified 7 and 8 features from the T2WI single sequence and the T2WI with DWI dual sequence for csPCa prediction in the transitional zone.The results showed that the T2WI with DWI dual sequence RF model had the highest AUC performance.The AUC of the training,test,and validation groups were 0.950,0.866,and 0.818,respectively.The test group accuracy was 0.805,sensitivity was 0.690,and specificity was 0.920;the validation group accu-racy was 0.726,sensitivity was 0.661,and specificity was 0.793.DCA showed that within a wide probability threshold range,the T2 WI with DWI dual sequence RF model had the greatest net benefit.Conclusion Based on the bpMRI radiomics model,non-invasive prediction of csPCa in the transitional zone can be achieved before surgery,which helps to make clinical diagnosis and treatment decisions.
10.Effect of miR-30d-5p on the growth and metastasis of cervical cancer cells
Hong PAN ; Ke MA ; Yan CAO ; Zheng-Wen QIN
Journal of Regional Anatomy and Operative Surgery 2024;33(8):670-675
Objective To explore the expression of miR-30d-5p in cervical cancer and its effect on malignant biological behavior of cervical cancer cells.Methods qRT-PCR was used to detect the expression of miR-30d-5p in cervical cancer tissues,adjacent tissues,normal cervical cells and cervical cancer cells.The mimic negative control(mimic NC)and miR-30d-5p mimic were transfected into SiHa cells,and the transfection efficiency of miR-30d-5p was detected by qRT-PCR.CCK-8 and cell clone formation experiments were used to detect cell proliferation.Flow cytometry was used to detect cell apoptosis.Scratch wound healing assay and Transwell assay were used to detect cell migration and invasion,respectively.Western blot was used to detect the expression of cell apoptosis and invasion-related proteins.Results Compared with adjacent tissues,the expression level of miR-30d-5p in cervical cancer tissues was significantly down-regulated(P<0.01).Compared withEct1/E6E7 cells,the expression level of miR-30d-5p in cervical cancer cell lines was significantly decreased(P<0.01).Overexpression of miR-30d-5p inhibited the proliferation,migration and invasion of SiHa cells and promoted apoptosis(P<0.01).In addition,overexpression of miR-30d-5p significantly down-regulated the expression levels of Bcl-2,N-cadherin and Vimentin(P<0.01),and significantly up-regulated the expression levels of Bax,cleaved caspase-3 and E-cadherin(P<0.01).Conclusion miR-30d-5p is significantly down-regulated in human cervical cancer tissues and related cervical cancer cell lines.miR-30d-5p can inhibit cervical cancer cells in vitro by inhibiting cell proliferation,migration and invasion,suggesting that miR-30d-5p may be a potential new target for diagnosis and treatment of cervical cancer patients.

Result Analysis
Print
Save
E-mail