1.A New Technique for Composite Graft Preparation in Aortic Root Replacement
Yasuhiro Sawada ; Shunsuke Sakamoto ; Kazuya Fujinaga ; Nin Tanaka ; Toru Mizumoto
Japanese Journal of Cardiovascular Surgery 2012;41(5):247-249
We report the Lampshade Technique : a new technique using Carbo-Seal Valsalva (Sorin Biomedica, Saluggia, Italy) to facilitate preparation of a composite graft. A Bentall operation and an ascending aorta replacement were performed with a composite graft using a Carbo-Seal Valsalva. This new technique can be considered useful as it can reduce the time required for preparing a composite graft, and create a skirt portion for continuous suturing to prevent bleeding.
2.Effect of muscle contraction type and speed on tissue oxygen dynamics in the M. vastus medialis during repeated knee extension exercise.
KAZUYA YASHIRO ; TAKAKO SAKAMOTO ; TOMOHO ISHII ; KAZUHIRO SUZUKAWA ; HIROSHI KIYOTA ; MAKOTO YAMATO ; SHOICHI NAKANO
Japanese Journal of Physical Fitness and Sports Medicine 2001;50(5):625-632
The purpose of this study was to analyze the relationship between activity pattern and temporal changes in the oxygen dynamics of human femoral medial vastus muscles. Oxygen dynamics were evaluated from the surface of the body by near-infrared spectroscopy (NIRS) . Arterial occlusion tests were performed in the femoral region at a cuff pressure of 300 mmHg. Exercise type and speed were controlled by CYBEX 6000. The exercise types examined were concentric contraction (CON) and eccentric contraction (ECC) . The 3 angular velocities of 90, 120 and 180 degrees were used as the exercise speeds. Exercise was performed continuously 60 times at maximum effort. The subjects were 7 healthy males with a mean age of 19.6±0.5 years. A transient decrease in oxygen concentration was observed during circulatory occlusion ; and rapid hyperemia occurred immediately after the removal of pressure. Oxygen concentration peaked above the control level and then returned to the initial level. In the CON exercise, the initial decrease in oxygen concentration was the largest at CON 90, and a gradual increase in oxygen concentration was clearly observed during exercise. In the recovery stage, after exercise at CON 90, 120 and 180, oxygen concentration exceeded the control level before exercise, then peaked and returned to the initial level. In the ECC exercise, an initial decrease in oxygen concentration was similar to that in the CON exercise, but a gradual increase in oxygen concentration was not observed during the exercise ; nor did oxygen concentration exceed the control level in the recovery stage after the exercise.
These results indicate that an increase in oxygen level after the removal of arterial occlusion, during and after the CON exercise was much higher than the control level before the exercise, sug-gesting the involvement of reactive hyperemia and exercise hyperemia.
7.Relationship between dexmedetomidine dose and plasma dexmedetomidine concentration in critically ill infants: a prospective observational cohort study.
Yoshihito FUJITA ; Koichi INOUE ; Tasuku SAKAMOTO ; Saya YOSHIZAWA ; Maiko TOMITA ; Toshimasa TOYO'OKA ; Kazuya SOBUE
Korean Journal of Anesthesiology 2017;70(4):426-433
BACKGROUND: Dexmedetomidine is a highly selective central α₂-agonist used as a sedative in pediatric intensive care unit (PICU). However, little is known about the relationship between dexmedetomidine dose and its plasma concentration during long-term infusion. We have previously demonstrated that the sedative plasma dexmedetomidine concentration is moderately correlated with the administered dose in adults (r = 0.653, P = 0.001). We hypothesized that there would be a similar relationship between the sedative dexmedetomidine concentration and administered dose in infants. METHODS: All patients admitted to the PICU at Nagoya City University Hospital, Japan, between November 2012 and March 2013 were eligible for inclusion in the study. Plasma dexmedetomidine concentration was measured by ultra-performance liquid chromatography coupled with tandem mass spectrometry. RESULTS: We measured the plasma dexmedetomidine concentration in 203 samples from 45 patients. Of these, 96 samples collected from 27 patients < 2 years old were included in this study. All patients received dexmedetomidine at 0.12–1.40 µg/kg/h. The median administration duration was 87.6 hours (range: 6–540 hours). Plasma dexmedetomidine concentration ranged from 0.07 to 3.17 ng/ml. Plasma dexmedetomidine concentration was not correlated with the administered dose (r = 0.273, P = 0.007). The approximate linear equation was y = 0.690x + 0.423. CONCLUSIONS: In infants, plasma dexmedetomidine concentration did not exhibit any correlation with administered dose, which is not a reliable means of obtaining optimal plasma concentration.
Adult
;
Chromatography, Liquid
;
Cohort Studies*
;
Critical Illness*
;
Dexmedetomidine*
;
Humans
;
Infant*
;
Intensive Care Units
;
Japan
;
Plasma*
;
Prospective Studies*
;
Tandem Mass Spectrometry
8.Reduced Intravenous Fluorescein Dose for Upper and Lower Gastrointestinal Tract Probe-Based Confocal Laser Endomicroscopy
Kazuya INOKI ; Seiichiro ABE ; Yusaku TANAKA ; Koji YAMAMOTO ; Daisuke HIHARA ; Ryoji ICHIJIMA ; Yukihiro NAKATANI ; HsinYu CHEN ; Hiroyuki TAKAMARU ; Masau SEKIGUCHI ; Masayoshi YAMADA ; Taku SAKAMOTO ; Satoru NONAKA ; Haruhisa SUZUKI ; Shigetaka YOSHINAGA ; Ichiro ODA ; Takahisa MATSUDA ; Yutaka SAITO
Clinical Endoscopy 2021;54(3):363-370
Background/Aims:
Probe-based confocal laser endomicroscopy (pCLE) requires the administration of intravenous (IV) fluorescein. This study aimed to determine the optimal dose of IV fluorescein for both upper and lower gastrointestinal (GI) tract pCLE.
Methods:
Patients 20 to 79 years old with gastric high-grade dysplasia (HGD) or colorectal neoplasms (CRNs) were enrolled in the study. The dose de-escalation method was employed with five levels. The primary endpoint of the study was the determination of the optimal dose of IV fluorescein for pCLE of the GI tract. The reduced dose was determined based on off-line reviews by three endoscopists. An insufficient dose of fluorescein was defined as the dose of fluorescein with which the pCLE images were not deemed to be visible. If all three endoscopists determined that the tissue structure was visible, the doses were de-escalated.
Results:
A total of 12 patients with gastric HGD and 12 patients with CRNs were enrolled in the study. Doses were de-escalated to 0.5 mg/kg of fluorescein for both non-neoplastic duodenal and colorectal mucosa. All gastric HGD or CRNs were visible with pCLE with IV fluorescein at 0.5 mg/kg.
Conclusions
In the present study, pCLE with IV fluorescein 0.5 mg/kg was adequate to visualize the magnified structure of both the upper and lower GI tract.
9.Reduced Intravenous Fluorescein Dose for Upper and Lower Gastrointestinal Tract Probe-Based Confocal Laser Endomicroscopy
Kazuya INOKI ; Seiichiro ABE ; Yusaku TANAKA ; Koji YAMAMOTO ; Daisuke HIHARA ; Ryoji ICHIJIMA ; Yukihiro NAKATANI ; HsinYu CHEN ; Hiroyuki TAKAMARU ; Masau SEKIGUCHI ; Masayoshi YAMADA ; Taku SAKAMOTO ; Satoru NONAKA ; Haruhisa SUZUKI ; Shigetaka YOSHINAGA ; Ichiro ODA ; Takahisa MATSUDA ; Yutaka SAITO
Clinical Endoscopy 2021;54(3):363-370
Background/Aims:
Probe-based confocal laser endomicroscopy (pCLE) requires the administration of intravenous (IV) fluorescein. This study aimed to determine the optimal dose of IV fluorescein for both upper and lower gastrointestinal (GI) tract pCLE.
Methods:
Patients 20 to 79 years old with gastric high-grade dysplasia (HGD) or colorectal neoplasms (CRNs) were enrolled in the study. The dose de-escalation method was employed with five levels. The primary endpoint of the study was the determination of the optimal dose of IV fluorescein for pCLE of the GI tract. The reduced dose was determined based on off-line reviews by three endoscopists. An insufficient dose of fluorescein was defined as the dose of fluorescein with which the pCLE images were not deemed to be visible. If all three endoscopists determined that the tissue structure was visible, the doses were de-escalated.
Results:
A total of 12 patients with gastric HGD and 12 patients with CRNs were enrolled in the study. Doses were de-escalated to 0.5 mg/kg of fluorescein for both non-neoplastic duodenal and colorectal mucosa. All gastric HGD or CRNs were visible with pCLE with IV fluorescein at 0.5 mg/kg.
Conclusions
In the present study, pCLE with IV fluorescein 0.5 mg/kg was adequate to visualize the magnified structure of both the upper and lower GI tract.