1.The effects of inspiratory muscle fatigue on subsequent high-intensity exercise performance and muscle tissue oxygenation
Jun KOIZUMI ; Kazuma IZUMI ; Toshiyuki OHYA
Japanese Journal of Physical Fitness and Sports Medicine 2022;71(4):355-365
It has been suggested that inspiratory muscles fatigue impairing blood flow to the active limb muscle via respiratory muscle metaboreflex. The purpose of this study was to investigate the effects of inspiratory muscle fatigue on exercise performance and muscle tissue oxygenation in high-intensity exercise takes about 3.5~5min. Eleven healthy males subjects performed two conditions of constant-load exercise to exhaustion (TTE) on a cycle ergometer at 100% of maximal oxygen uptake. The two conditions—inspiratory muscle fatiguing (IMF) and non-fatiguing (PLA) —which had different intensity inspiratory resistance breathing (IRB) were performed before exercise. Muscle tissue oxygenations were measured by deoxyhemogrobin (HHb), oxygen saturation index (StO2) from right vastus lateralis during TTE. All data were analyzed from nine subjects whose inspiratory muscle were fatigued by IRB in IMF. Results: TTE was significantly shorter in IMF compare to PLA (244±31s vs. 268±38s, p<0.05). HHb was significantly higher and StO2 was significantly lower in IMF than in PLA (p<0.05). Conclusion: High-intensity exercise completed in 3.5~5 minutes, it was suggested that inspiratory muscle fatigue reduced the oxygen deriver to active limb muscle, resulting in decrease exercise performance. Improving function of inspiratory muscles, such as in inspiratory muscle training, may improve oxygenation of the active limb muscle and enhance exercise performance.
2.Increased Signal in the Superior Cerebellar Peduncle of Patients with Progressive Supranuclear Palsy
Hiroshi KATAOKA ; Yukako NISHIMORI ; Takao KIRIYAMA ; Hitoki NANAURA ; Tesseki IZUMI ; Nobuyuki EURA ; Naoki IWASA ; Kazuma SUGIE
Journal of Movement Disorders 2019;12(3):166-171
OBJECTIVE: The provisional diagnosis of progressive supranuclear palsy (PSP) depends on a combination of typical clinical features and specific MRI findings, such as atrophy of the tegmentum in the midbrain. Atrophy of the superior cerebellar peduncle (SCP) distinguishes PSP from other types of parkinsonism. Histological factors affect the conventional fluid-attenuated inversion recovery (FLAIR) signals, such as the extent of neuronal loss and gliosis. METHODS: We investigated patients with PSP to verify the percentage of patients with various PSP phenotypes presenting a high signal intensity in the SCP. Three interviewers, who were not informed about the clinical data, visually inspected the presence or absence of a high signal intensity in the SCP on the FLAIR images. We measured the pixel value in the SCP of each patient. Clinical characteristics were evaluated using the Mann-Whitney test, followed by the χ² test. RESULTS: Ten of the 51 patients with PSP showed a high signal intensity in the SCP on FLAIR MRI. Higher pixel values were observed within the SCP of patients with a high signal intensity in the SCP than in patients without a high signal intensity (p < 0.001). The sensitivity and specificity of the high signal intensity in the SCP of patients with PSP was 19.6% and 100%, respectively. This finding was more frequently observed in patients with PSP with Richardson's syndrome (PSP-RS) (25.7%) than other phenotypes (6.2%). CONCLUSION: The high signal intensity in the SCP on FLAIR MRI might be an effective diagnostic tool for PSP-RS.
Atrophy
;
Diagnosis
;
Gliosis
;
Humans
;
Magnetic Resonance Imaging
;
Mesencephalon
;
Neurodegenerative Diseases
;
Neurons
;
Parkinsonian Disorders
;
Phenotype
;
Sensitivity and Specificity
;
Supranuclear Palsy, Progressive