1.Harmine exhibits anti-apoptotic properties and reduces diabetes-induced testicular damage caused by streptozotocin in rats
Ali GHANBARI ; Cyrus JALILI ; Kaveh SHAHVEISI ; Nasim AKHSHI
Clinical and Experimental Reproductive Medicine 2024;51(4):324-333
Objective:
Diabetes mellitus induces fertility problems in men, mainly because of increased free radicals. Natural resources are effective for male infertility treatment. This study investigated the effects of harmine, an alkaloid available in Peganum harmala L., on the male reproductive system of diabetic rats.
Methods:
We divided 32 rats into four groups, and eight were randomly placed in each group. For diabetes induction, the animals received 50 mg/kg of streptozotocin intraperitoneally. After 1 week, animals received 15 mg/kg of harmine (28 days; intraperitoneal). Histopathological examinations, serum levels of male hormones, levels of nitric oxide (NO) and malondialdehyde (MDA) in the testes, total antioxidant capacity (TAC), insulin serum levels, fasting blood glucose levels, the apoptotic index, and semen analysis were assessed.
Results:
The diabetes group exhibited morphological changes in testicular tissue, significant decreases in the diameter of the seminiferous tubule, the Johnsen score, testosterone, luteinizing hormone, follicle-stimulating hormone, insulin serum levels, and TAC in testicular tissue (p<0.01). Harmine treatment ameliorated the morphological changes in the testes and improved sperm parameters relative to the diabetes group (p<0.05). The NO and MDA levels in the testes, fasting blood glucose serum levels, and apoptotic index parameters were significantly elevated in the diabetes group, while in the diabetes+harmine group, these parameters were reduced (p<0.01).
Conclusion
Harmine protects testicular tissue and sperm against diabetes-induced damage. This effect of harmine is associated with a rebalancing of the antioxidant capacity that subsequently decreases apoptosis in the testes.
2.Harmine exhibits anti-apoptotic properties and reduces diabetes-induced testicular damage caused by streptozotocin in rats
Ali GHANBARI ; Cyrus JALILI ; Kaveh SHAHVEISI ; Nasim AKHSHI
Clinical and Experimental Reproductive Medicine 2024;51(4):324-333
Objective:
Diabetes mellitus induces fertility problems in men, mainly because of increased free radicals. Natural resources are effective for male infertility treatment. This study investigated the effects of harmine, an alkaloid available in Peganum harmala L., on the male reproductive system of diabetic rats.
Methods:
We divided 32 rats into four groups, and eight were randomly placed in each group. For diabetes induction, the animals received 50 mg/kg of streptozotocin intraperitoneally. After 1 week, animals received 15 mg/kg of harmine (28 days; intraperitoneal). Histopathological examinations, serum levels of male hormones, levels of nitric oxide (NO) and malondialdehyde (MDA) in the testes, total antioxidant capacity (TAC), insulin serum levels, fasting blood glucose levels, the apoptotic index, and semen analysis were assessed.
Results:
The diabetes group exhibited morphological changes in testicular tissue, significant decreases in the diameter of the seminiferous tubule, the Johnsen score, testosterone, luteinizing hormone, follicle-stimulating hormone, insulin serum levels, and TAC in testicular tissue (p<0.01). Harmine treatment ameliorated the morphological changes in the testes and improved sperm parameters relative to the diabetes group (p<0.05). The NO and MDA levels in the testes, fasting blood glucose serum levels, and apoptotic index parameters were significantly elevated in the diabetes group, while in the diabetes+harmine group, these parameters were reduced (p<0.01).
Conclusion
Harmine protects testicular tissue and sperm against diabetes-induced damage. This effect of harmine is associated with a rebalancing of the antioxidant capacity that subsequently decreases apoptosis in the testes.
3.Harmine exhibits anti-apoptotic properties and reduces diabetes-induced testicular damage caused by streptozotocin in rats
Ali GHANBARI ; Cyrus JALILI ; Kaveh SHAHVEISI ; Nasim AKHSHI
Clinical and Experimental Reproductive Medicine 2024;51(4):324-333
Objective:
Diabetes mellitus induces fertility problems in men, mainly because of increased free radicals. Natural resources are effective for male infertility treatment. This study investigated the effects of harmine, an alkaloid available in Peganum harmala L., on the male reproductive system of diabetic rats.
Methods:
We divided 32 rats into four groups, and eight were randomly placed in each group. For diabetes induction, the animals received 50 mg/kg of streptozotocin intraperitoneally. After 1 week, animals received 15 mg/kg of harmine (28 days; intraperitoneal). Histopathological examinations, serum levels of male hormones, levels of nitric oxide (NO) and malondialdehyde (MDA) in the testes, total antioxidant capacity (TAC), insulin serum levels, fasting blood glucose levels, the apoptotic index, and semen analysis were assessed.
Results:
The diabetes group exhibited morphological changes in testicular tissue, significant decreases in the diameter of the seminiferous tubule, the Johnsen score, testosterone, luteinizing hormone, follicle-stimulating hormone, insulin serum levels, and TAC in testicular tissue (p<0.01). Harmine treatment ameliorated the morphological changes in the testes and improved sperm parameters relative to the diabetes group (p<0.05). The NO and MDA levels in the testes, fasting blood glucose serum levels, and apoptotic index parameters were significantly elevated in the diabetes group, while in the diabetes+harmine group, these parameters were reduced (p<0.01).
Conclusion
Harmine protects testicular tissue and sperm against diabetes-induced damage. This effect of harmine is associated with a rebalancing of the antioxidant capacity that subsequently decreases apoptosis in the testes.
4.Role of Cannabinoid CB1 Receptor in Object Recognition Memory Impairment in Chronically Rapid Eye Movement Sleep-deprived Rats.
Kaveh SHAHVEISI ; Seyedeh MARZIYEH HADI ; Hamed GHAZVINI ; Mehdi KHODAMORADI
Chinese Medical Sciences Journal 2023;38(1):29-37
Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.
Rats
;
Animals
;
Rimonabant/pharmacology*
;
Memory
;
Sleep, REM
;
Receptors, Cannabinoid
;
Cannabinoids/pharmacology*