1.In Vitro Efficacy of Six Alternative Antibiotics against Multidrug Resistant Escherichia Coli and Klebsiella Pneumoniae from Urinary Tract Infections.
Yu Ting CHEN ; Katzrin Ahmad MURAD ; Lily Sy NG ; Jonathan Th SEAH ; Joon Jae PARK ; Thean Yen TAN
Annals of the Academy of Medicine, Singapore 2016;45(6):245-250
INTRODUCTIONIncreasing resistance in Escherichia coli and Klebsiella pneumoniae to firstline antibiotics makes therapeutic options for urinary tract infections (UTIs) challenging. This study investigated the in vitro efficacies of 6 antibiotics against multidrug resistant (MDR) uropathogens.
MATERIALS AND METHODSMinimum inhibitory concentrations to ceftibuten, cefpodoxime, fosfomycin, mecillinam, temocillin, and trimethoprim were determined against 155 MDR-isolates of E. coli and K. pneumoniae. The presence of extended-spectrum beta-lactamases (ESBL) and plasmid-borne AmpC enzymes was determined by phenotypic testing with genotyping performed by multiplex polymerase chain reaction.
RESULTSTemocillin demonstrated highest susceptibility rates for both E. coli (95%) and K. pneumoniae (95%) when breakpoints for uncomplicated UTIs were applied; however, temocillin susceptibility was substantially lower when "systemic infection" breakpoints were used. Fosfomycin demonstrated the best in vitro efficacy of the orally available agents, with 78% and 69% of E. coli and K. pneumoniae isolates susceptible, respectively. The next most effective antibiotics were ceftibuten (45%) and mecillinam (32%). ESBL and ampC genes were present in 47 (30%) and 59 (38%) isolates.
CONCLUSIONThis study demonstrated few oral therapeutic options for MDR-uropathogens, with fosfomycin demonstrating the best in vitro activity.
Amdinocillin ; pharmacology ; Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; genetics ; Ceftizoxime ; analogs & derivatives ; pharmacology ; Cephalosporins ; pharmacology ; Drug Resistance, Multiple, Bacterial ; genetics ; Escherichia coli ; drug effects ; genetics ; Escherichia coli Infections ; microbiology ; Fosfomycin ; pharmacology ; Genotype ; Humans ; In Vitro Techniques ; Klebsiella Infections ; microbiology ; Klebsiella pneumoniae ; drug effects ; genetics ; Microbial Sensitivity Tests ; Multiplex Polymerase Chain Reaction ; Penicillins ; pharmacology ; Singapore ; Trimethoprim ; pharmacology ; Urinary Tract Infections ; microbiology ; beta-Lactamases ; genetics