1.Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation.
Katesirin RUAMYOD ; Wattana B WATANAPA ; Chanrit KAKHAI ; Pimchanok NAMBUNDIT ; Sukrit TREEWAREE ; Parin WONGSANUPA
Journal of Integrative Medicine 2023;21(1):99-105
OBJECTIVE:
To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion.
METHODS:
We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively.
RESULTS:
Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action.
CONCLUSION
This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Rats
;
Animals
;
Insulin Secretion
;
Insulin/pharmacology*
;
Insulin-Secreting Cells/metabolism*
;
Coumaric Acids/metabolism*
;
Calcium/metabolism*