1.STUDIES ON THE OPTIMAL MIXED PROPORTION OF INOCULATION IN PRODUCING SINGLE SELL PROTEIN
Kangzhen XU ; Jirong SONG ; Jie HUANG ; Tao YIN ;
Microbiology 1992;0(04):-
Using apple pomace to produce single cell protein (SPC) with three and four strains respectively, the optimal mixed proportion of inoculation, one of the main factors of multiple strains' fermentation to produce SPC, was studied The experiment and analysis indicated that a practicable method to get the optim al mixed proportion of inoculation was obtained, which will perfect correlative researches of this field
2.Effects of combined siRNA-TR and -TERT on telomerase activity and growth of bladder transitional cell cancer BIU-87 cells.
Wen, CHENG ; Zhifeng, WEI ; Jianping, GAO ; Zhengyu, ZHANG ; Jingping, GE ; Kangzhen, JING ; Feng, XU ; Peng, XIE
Journal of Huazhong University of Science and Technology (Medical Sciences) 2010;30(3):391-6
The effects of combined RNA interference (RNAi) of human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT) genes on telomerase activity in a bladder cancer cell line (BIU-87 cells) were investigated by using gene chip technology in vitro with an attempt to evaluate the role of RNAi in the gene therapy of bladder transitional cell cancer (BTCC). Three TR-specific double-stranded small interfering RNAs (siRNAs) and three TERT-specific double-stranded siRNAs were designed to target different regions of TR and TERT mRNA. The phTR-siRNA, phTERT-siRNA, and the combination of both plasmids phTR+phTERT-siRNA were transfected into BIU-87 cells. The expression of hTR and hTERT mRNA was detected by quantitative fluorescent reverse transcription-polymerase chain reaction, and a telomeric repeat amplification protocol was applied to detect telomerase activity. Growth inhibition of BIU-87 cells was measured by MTT assay. Gene chip analysis was performed to evaluate the effects of the combined RNAi of hTR+hTERT genes on telomerase activity and growth of BIU-87 cells in vitro. The results showed that the expression of hTERT and hTR mRNA was inhibited by pRNAT-hTERT-III, pRNAT-hTR-III, and pRNAT-hTR-III+hTERT-III in BIU-87 cells. The inhibition efficiency of pRNAT-hTERT-III, pRNAT-hTR-III, pRNAT-hTERT-III+pRNAT-hTR-III was 67% for TERT mRNA, 41% for TR mRNA, 57% for TR mRNA and 70% for TERT mRNA in BIU-87 cells respectively. The growth of BIU-87 cells was inhibited and telomerase activity was considerably decreased, especially in the cells treated with combined RNAi-hTR and -hTERT. Gene chip analysis revealed that 21 genes were down-regulated (ATM, BAX, BCL2, BCL2L1, BIRC5, CD44, CTNNB1, E2F1, JUN, MCAM, MTA1, MYC, NFKB1, NFKBIA, NME4, PNN, PNN, SERPINE1, THBS1, TNFRSF1A, and UCC1). The results indicated that hTR-siRNA and hTERT-siRNA, especially their combination, siRNA hTR+hTERT, specifically and effectively suppressed the expression of both hTR and hTERT mRNA and telomerase activity. Molecular biological mechanism by which combined siRNA-TR and -TERT inhibited telomerase activity and growth of BIU-87 cells in vitro may involve the down-regulation of the 21 genes.
3.Effects of Combined siRNA-TR and-TERT on Telomerase Activity and Growth of Bladder Transitional Cell Cancer BIU-87 Cells
CHENG WEN ; WEI ZHIFENG ; GAO JIANPING ; ZHANG ZHENGYU ; GE JINGPING ; JING KANGZHEN ; XU FENG ; XIE PENG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2010;30(3):391-396
The effects of combined RNA interference(RNAi)of human telomerase RNA(hTR)and human telomerase reverse transcriptase(hTERT)genes on telomerase activity in a bladder cancer cell line(BIU-87 cells)were investigated by using gene chip technology in vitro with an attempt to evaluate the role of RNAi in the gene therapy of bladder transitional cell cancer(BTCC).Three TR-specific double-stranded small interfering RNAs(siRNAs)and three TERT-specific double-stranded siRNAs were designed to target different regions of TR and TERT mRNA.The phTR-siRNA,pbTERT-siRNA,and the combination of both plasmids phTR+phTERT-siRNA were transfected into BIU-87 cells.The expression of hTR and hTERT mRNA was detected by quantitative fluorescent reverse transcription-polymerase chain reaction,and a telomeric repeat amplification protocol was applied to detect telomerase activity.Growth inhibition of BIU-87 cells was measured by MTT assay.Gene chip analysis was performed to evaluate the effects of the combined RNAi of hTR+hTERT genes on telomerase activity and growth of BIU-87 cells in vitro.The results showed that the expression of hTERT and hTR mRNA was inhibited by pRNAT-hTERT-Ⅲ,pRNAT-hTR-Ⅲ,and pRNAT-hTR-Ⅲ+hTERT-Ⅲ in BIU-87 cells.The inhibition efficiency of pRNAT-hTERT-Ⅲ,pRNAT-hTR-Ⅲ,pRNAT-hTERT-Ⅲ+pRNAT-hTR-Ⅲ was 67% for TERT mRNA,41% for TR mRNA,57% for TR mRNA and 70% for TERT mRNA in BIU-87 cells respectively.The growth of BIU-87 cells was inhibited and telomerase activity was considerably decreased,especially in the cells treated with combined RNAi-hTR and-hTERT.Gene chip analysis revealed that 21 genes were down-regulated(ATM,BAX,BCL2,BCL2L1,B1RC5,CD44,CTNNB1,E2F1,JUN,MCAM,MTA1,MYC,NFKB1,NFKBIA.NME4,PNN,PNN,SERPINE1,THBS1,TNFRSF1A,and UCC1).The results indicated that hTR-siRNA and hTERT-siRNA,especially their combination,siRNA hTR+hTERT,specifically and effectively suppressed the expression of both hTR and hTERT mRNA and telomerase activity.Molecular biological mechanism by which combined siRNA-TR and-TERT inhibited telomerase activity and growth of BIU-87 cells in vitro may involve the down-regulation ofthe 21 genes.