1.Generation of VSX2 fluorescent reporter human induced pluripotent stem cells by CRISPR/Cas9 technology
Dandan ZHENG ; Yuan WANG ; Zuming ZHANG ; Yuanyuan GUAN ; Bingbing XIE ; Kangxin JIN ; Mengqing XIANG ; Xiufeng ZHONG
Chinese Journal of Experimental Ophthalmology 2020;38(10):814-820
Objective:To establish a fluorescent reporter human induced pluripotent stem cell line (hiPSCs) for monitoring the expression of visual system homeobox 2 ( VSX2). Methods:VSX2_small guide RNA (sgRNA) was inserted into vector PX459 to construct knockout plasmid, and the P2A-eGFP knock-in donor plasmid was conducted at the same time.The two plasmids were transfected into BC1-hiPSCs.Single cell clones were generated after treatment of puromycin.Correct insertion was confirmed by PCR and Sanger sequencing.The isogenicity of the parental and the reporter hiPSCs was confirmed by STR analysis and karyotyping.Pluripotency capacity of the reporter hiPSCs was analysed by reverse trascription PCR and immunofluorescence.Three-germ-layer formation experiment was carried out to analyse the multi-lineage differentiation ability of the reporter hiPSCs.The reporter hiPSCs were further differentiated to obtain three-dimension (3D) retinal organoids, and immunofluorescence was used to identify the co-localization of the enhanced green fluorescent protein (eGFP) and VSX2.Results:A VSX2 eGFP reporter hiPSC clone was successfully obtained by CRISPR/Cas9 technology, which was consistent with the parental hiPSCs (BC1-hiPSCs) in morphology, without any chromosomal aberrations or cell line cross-contamination.Reverse transcription PCR assay and immunofluorescence showed obvious positive expressions of iPSCs markers in BC1- VSX2 eGFP-iPSCs, including NANOG, OCT4, SOX2, DNMT3B and GDF3 mRNA as well as NANOG, OCT4, SSEA4 and TRA-1-60 protein.The α-fetoprotein (AFP), α-smooth muscle actin (α-SMA) and neuronal class Ⅲ β-tubulin (TUJ1) were expressed in endoderm, mesoderm and ectoderm, respeetively, derived from BC1- VSX2 eGFP-iPSCs, and eGFP and VSX2 were co-stained in the neural retinal layer of 3D retinal organoids derived from BC1- VSX2 eGFP-iPSCs by immunofluorescence. Conclusions:VSX2 fluorescent reporter hiPSCs is successfully generated, which can monitor the temporal and spatial expression changes of VSX2 protein in real time, providing a powerful tool for evaluation of retina development mechanism and cell therapy.
2.Simultaneous Determination of 4 Kinds of Effective Components in Volatile Oil of Forsythia suspensa by QAMS
Ting WU ; Liyuan TAN ; Xuwen WANG ; Kangxin ZHAI ; Jin CHEN ; Xiangping PEI ; Yonggang ZHOU ; Yuhua ZHANG ; Shan WEI ; Shurong ZHANG
China Pharmacy 2019;30(14):1981-1984
OBJECTIVE: To establish a method for simultaneous determination of α-pinene, β-pinene, limonene and α-terpineol in volatile oil of Forsythia suspensa. METHODS: GC method was adopted. The determination was performed on HP-5 capillary column through temperature-programmed route. The inlet temperature was 230 ℃, and detector temperature was 250 ℃; split sampling was applied (split ratio of 8 ∶ 1); the air flow rate was 300 mL/min, the hydrogen flow rate was 30 mL/min, the tail gas flow rate was 30 mL/min, and the injection volume was 1 μL. Using limonene as internal reference, relative correction factors of α-pinene, β-pinene and α-terpineol were established, and the reproducibility of relative correction factors were investigated by using different chromatographs and columns, and chromatographic peak location of components was measured. The contents of above components were calculated with QAMS, and then compared with the results of external standard method. RESULTS: The linear range of α-pinene, β-pinene, limonene and α-terpineol were 16.5-990.0, 38.1-2 287.5, 8.2-491.2, 2.4-142.5 μg/mL, respectively (r≥0.999 1). RSDs of precision, reproducibility and stability tests were all lower than 3% (n=6). Average recoveries were 99.7%-105.5%(RSD<4%,n=9). Compared with limonene (1.00),the average relative correction factors of α-pinene, β-pinene and α-terpineol were 0.91,0.86 and 1.11(n=3); relative retention time were 0.69-0.74, 0.81-0.86, 1.25-1.35(RSD<3%,n=3). By using different chromatographs and columns, RSDs of relative correction factors were 0.21%-4.65%(n=6). Compared with external standard method, determination results of above 4 components were consistent (the absolute value of relative error were all less than 7%). CONCLUSIONS: QAMS can be used for simultaneous determination of 4 kinds of effective components in volatile oil from F. suspensa.