1.Gallbladder polypoid lesions: Current practices and future prospects
Kun WANG ; Qingpeng XU ; Lu XIA ; Jianing SUN ; Kanger SHEN ; Haoran LIU ; Linning XU ; Rui LI
Chinese Medical Journal 2024;137(14):1674-1683
Gallbladder polypoid lesions (GPLs) refer to any elevated lesion of the mucosal surface of the gallbladder wall, and the prevalence is estimated to be between 0.9% and 12.1%. GPLs include benign polyps and malignant polyps. Benign polyps are further classified as non-neoplastic polyps and neoplastic polyps. Cholesterol polyps are the most common benign polyps and adenocarcinoma is the main type of malignant polyp. Hepatitis B virus infection, liver function abnormalities, dyslipidemia, and obesity are the main risk factors for GPLs. Studies of biological mechanisms have focused on malignant gallbladder polyps, the development of which is regulated by hormone levels in vivo, gut microbiota, inflammation, oxidative stress, Salmonella typhimurium, and related molecules. Diagnostic modalities include chemical examination and imaging examination, with imaging examination currently being the mainstay. Treatment of patients with GPLs is based on the presence or absence of symptoms, age, size of the polyps, tendency of the polyp to increase, and risk factors for symptomatic malignancy to determine whether surgery should be performed.
2.B7-H3 confers stemness characteristics to gastric cancer cells by promoting glutathione metabolism through AKT/pAKT/Nrf2 pathway.
Lu XIA ; Yuqi CHEN ; Juntao LI ; Jiayu WANG ; Kanger SHEN ; Anjing ZHAO ; Haiyan JIN ; Guangbo ZHANG ; Qinhua XI ; Suhua XIA ; Tongguo SHI ; Rui LI
Chinese Medical Journal 2023;136(16):1977-1989
BACKGROUND:
Cancer stem-like cells (CSCs) are a small subset of cells in tumors that exhibit self-renewal and differentiation properties. CSCs play a vital role in tumor formation, progression, relapse, and therapeutic resistance. B7-H3, an immunoregulatory protein, has many protumor functions. However, little is known about the mechanism underlying the role of B7-H3 in regulating gastric cancer (GC) stemness. Our study aimed to explore the impacts of B7-H3 on GC stemness and its underlying mechanism.
METHODS:
GC stemness influenced by B7-H3 was detected both in vitro and in vivo . The expression of stemness-related markers was examined by reverse transcription quantitative polymerase chain reaction, Western blotting, and flow cytometry. Sphere formation assay was used to detect the sphere-forming ability. The underlying regulatory mechanism of B7-H3 on the stemness of GC was investigated by mass spectrometry and subsequent validation experiments. The signaling pathway (Protein kinase B [Akt]/Nuclear factor erythroid 2-related factor 2 [Nrf2] pathway) of B7-H3 on the regulation of glutathione (GSH) metabolism was examined by Western blotting assay. Multi-color immunohistochemistry (mIHC) was used to detect the expression of B7-H3, cluster of differentiation 44 (CD44), and Nrf2 on human GC tissues. Student's t -test was used to compare the difference between two groups. Pearson correlation analysis was used to analyze the relationship between two molecules. The Kaplan-Meier method was used for survival analysis.
RESULTS:
B7-H3 knockdown suppressed the stemness of GC cells both in vitro and in vivo . Mass spectrometric analysis showed the downregulation of GSH metabolism in short hairpin B7-H3 GC cells, which was further confirmed by the experimental results. Meanwhile, stemness characteristics in B7-H3 overexpressing cells were suppressed after the inhibition of GSH metabolism. Furthermore, Western blotting suggested that B7-H3-induced activation of GSH metabolism occurred through the AKT/Nrf2 pathway, and inhibition of AKT signaling pathway could suppress not only GSH metabolism but also GC stemness. mIHC showed that B7-H3 was highly expressed in GC tissues and was positively correlated with the expression of CD44 and Nrf2. Importantly, GC patients with high expression of B7-H3, CD44, and Nrf2 had worse prognosis ( P = 0.02).
CONCLUSIONS
B7-H3 has a regulatory effect on GC stemness and the regulatory effect is achieved through the AKT/Nrf2/GSH pathway. Inhibiting B7-H3 expression may be a new therapeutic strategy against GC.
Humans
;
Cell Line, Tumor
;
Neoplasm Recurrence, Local
;
NF-E2-Related Factor 2/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Stomach Neoplasms