1.Congenital tooth agenesis-related EDAR variants and pedigree analysis of HED patients with two variants
Rong LAN ; Qinggang DAI ; Kang YU ; Xiaoling BIAN ; Lijuan YE ; Yiqun WU ; Feng WANG
Journal of Shanghai Jiaotong University(Medical Science) 2024;44(6):694-701
		                        		
		                        			
		                        			Objective·To explore EDAR(ectodysplasin A receptor)gene variants that lead to congenital tooth agenesis,and preliminarily analyze the reasons why variants in EDAR can cause both syndromic and non-syndromic tooth agenesis.Methods·Patients with congenital tooth agenesis admitted to the Department of 2nd Dental Center,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine and their family members were included,and genomic DNA from their peripheral blood was extracted for whole exome sequencing(WES).After preliminary screening,PolyPhen-2,Mutation Taster,and Provean were used to predict the harmfulness of potential variants.The screened variants in patients and their families were verified by Sanger sequencing.Conservation analysis of variants was performed,and Swiss-Model was used to analyze the changes in the three-dimensional structure of EDAR.The teeth and syndromic phenotype of the patients and their family members were investigated.Results·Among the included congenital tooth agenesis patients,five patients with EDAR mutations were found,one with EDAR frameshift mutation c.368_369insC(p.L123fs)and the other four with EDAR missense mutations.Two of these four patients were diagnosed as non-syndromic tooth agenesis(NSTA),resulted from c.77C>A(p.A26E)homozygous mutation and c.380C>T(p.P127L)heterozygous mutation,respectively.The other two patients with two variants were diagnosed as hypohidrotic ectodermal dysplasia(HED).One compound heterozygous missense mutation patient carried EDAR c.77C>T(p.A26V)from her father andEDAR c.1281G>C(p.L427F)from her mother;the other patient with both EDAR and EDA mutations carried EDAR c.1138A>C(p.S380R)heterozygous mutation and EDA c.1013C>T(p.T338M)hemizygous mutation.Both variants were from his mother and were reported to be related with NSTA.Two of these missense mutations,EDAR c.1281G>C(p.L427F)and EDAR c.77C>A(p.A26E),had not been reported before.The missense mutations affected the protein's spatial conformation by altering the polarity,charge,or volume of the amino acid residues.The frameshift mutation caused a non-triplet base addition,which probably led to protein truncation or degradation.Conclusion·Two new EDAR missense mutations are discovered.An NSTA patients with EDAR homozygous mutations and an HED patient with both EDA and EDAR mutations are reported.It expands the understanding of pathogenic mechanisms of EDAR mutations causing HED and NSTA.
		                        		
		                        		
		                        		
		                        	
2.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
		                        		
		                        			
		                        			Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
		                        		
		                        		
		                        		
		                        	
3.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
4.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
5.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
6.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
7.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
8.Challenges and potential improvements in the Accreditation Standards of the Korean Institute of Medical Education and Evaluation 2019 (ASK2019) derived through meta-evaluation: a cross-sectional study
Yoonjung LEE ; Min-jung LEE ; Junmoo AHN ; Chungwon HA ; Ye Ji KANG ; Cheol Woong JUNG ; Dong-Mi YOO ; Jihye YU ; Seung-Hee LEE
Journal of Educational Evaluation for Health Professions 2024;21(1):8-
		                        		
		                        			 Purpose:
		                        			This study aimed to identify challenges and potential improvements in Korea's medical education accreditation process according to the Accreditation Standards of the Korean Institute of Medical Education and Evaluation 2019 (ASK2019). Meta-evaluation was conducted to survey the experiences and perceptions of stakeholders, including self-assessment committee members, site visit committee members, administrative staff, and medical school professors. 
		                        		
		                        			Methods:
		                        			A cross-sectional study was conducted using surveys sent to 40 medical schools. The 332 participants included self-assessment committee members, site visit team members, administrative staff, and medical school professors. The t-test, one-way analysis of variance and the chi-square test were used to analyze and compare opinions on medical education accreditation between the categories of participants. 
		                        		
		                        			Results:
		                        			Site visit committee members placed greater importance on the necessity of accreditation than faculty members. A shared positive view on accreditation’s role in improving educational quality was seen among self-evaluation committee members and professors. Administrative staff highly regarded the Korean Institute of Medical Education and Evaluation’s reliability and objectivity, unlike the self-evaluation committee members. Site visit committee members positively perceived the clarity of accreditation standards, differing from self-assessment committee members. Administrative staff were most optimistic about implementing standards. However, the accreditation process encountered challenges, especially in duplicating content and preparing self-evaluation reports. Finally, perceptions regarding the accuracy of final site visit reports varied significantly between the self-evaluation committee members and the site visit committee members. 
		                        		
		                        			Conclusion
		                        			This study revealed diverse views on medical education accreditation, highlighting the need for improved communication, expectation alignment, and stakeholder collaboration to refine the accreditation process and quality. 
		                        		
		                        		
		                        		
		                        	
9.Macrophage activation syndrome in neonatal lupus presenting with fever and rash
Ji Yoon YU ; Tae Hwan KIM ; Ye Ji KIM ; Hyun Mi KANG ; In Hyuk YOO ; Jung Woo RHIM ; Soo Young LEE ; Dae Chul JEONG
Journal of Rheumatic Diseases 2024;31(1):49-53
		                        		
		                        			
		                        			 Neonatal lupus can occur in infants born to mother with autoimmune disorders through transplacental auto-antibodies. Clinical manifestations in neonatal lupus include cutaneous lesions and hematologic or hepatobiliary findings resembling those seen in systemic lupus erythematosus. In autoimmune state, macrophage activation syndrome (MAS) represent a critical and potentially fatal complication that can result in mortality if not immediately identified and managed with the appropriate care. Here we present a 33-day-old girl diagnosed with neonatal lupus and serious MAS. She was delivered by a primipara mother who did not exhibit any autoimmune symptoms. The patient visited the hospital due to fever and pancytopenia. Laboratory data were compatible with MAS, including pancytopenia, high level of ferritin, soluble interleukin-2, and decreased natural killer cell activity. In addition, autoimmune study showed positive results for anti-nuclear antibody (ANA), anti-Sjogren syndrome antigen A (SSA), and SSB, The autoimmune study for mother also showed positive results for ANA, anti-SSA, and SSB. The patient recovered after she received high dose steroid and supportive care. Our case indicates that neonatal lupus should be taken into consideration when fever, erythematous skin rash, and pancytopenia are observed in infants, even if their mothers have no prior history of autoimmune conditions. 
		                        		
		                        		
		                        		
		                        	
10.Exploring the Expression and Function of T Cell Surface Markers Identified through Cellular Indexing of Transcriptomes and Epitopes by Sequencing
Joon Yeon HWANG ; Youngtaek KIM ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(9):544-555
		                        		
		                        			 Purpose:
		                        			By utilizing both protein and mRNA expression patterns, we can identify more detailed and diverse immune cells, providing insights into understanding the complex immune landscape in cancer ecosystems. 
		                        		
		                        			Materials and Methods:
		                        			This study was performed by obtaining publicly available Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data of peripheral blood mononuclear cells (PBMCs) from the Gene Expression Omnibus database. A total of 94674 total cells were analyzed, of which 32412 were T cells. There were 228 protein features and 16262 mRNA features in the data.The Seurat package was used for quality control and preprocessing, principal component analysis was performed, and Uniform Manifold Approximation and Projection was used to visualize the clusters. Protein and mRNA levels in the CITE-seq were analyzed. 
		                        		
		                        			Results:
		                        			We observed that a subset of T cells in the clusters generated at the protein level divided better. By identifying mRNA markers that were highly correlated with the CD4 and CD8 proteins and cross-validating CD26 and CD99 markers using flow cytometry, we found that CD4 + and CD8+ T cells were better discriminated in PBMCs. Weighted Nearest Neighbor clustering results identified a previously unobserved T cell subset. 
		                        		
		                        			Conclusion
		                        			In this study, we used CITE-seq data to confirm that protein expression patterns could be used to identify cells more precisely. These findings will improve our understanding of the heterogeneity of immune cells in the future and provide valuable insights into the complexity of the immune response in health and disease. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail