1.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
2.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
5.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
6.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
8.Psychotropic Drug Use in Korean Patients With Osteoarthritis
Seong-Hun KANG ; Hyun Ah KIM ; Insun CHOI ; Chan Mi PARK ; Hoyol JHANG ; Jinhyun KIM ; Dong Jin GO ; Suhyun JANG
Journal of Korean Medical Science 2025;40(12):e53-
Background:
There are few safe effective ways to relieve osteoarthritis (OA) pain; as a result, off-label psychotropic drug prescriptions have increased worldwide. This study examined the change in psychotropic drug prescriptions for patients with OA from 2011 to 2020 using the Korean National Health Insurance Service dataset.
Methods:
The study population consisted of patients with hip or knee OA aged ≥ 65 years.Psychotropic drugs included opioids, benzodiazepines, non-benzodiazepine hypnotics (Z-drugs), anti-epileptics, tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), typical antipsychotics, atypical antipsychotics, and anxiolytics. The prevalence and long-term (> 3 months) prescription rates of psychotropic drugs in OA patients were calculated.
Results:
The study included 1,821,158 patients with OA (mean age 71.7 years; 65.32% female).Of the cohort, 49% had comorbidities for which psychotropics were indicated. The prevalence of psychotropic prescriptions decreased from 58.2% to 52.0% in 2018 and then leveled off.The long-term prescription rate remained constant until 2018 and then increased slightly.The most commonly prescribed psychotropics were opioids and long- and short-acting benzodiazepines. The prescription rates of opioids and long-acting benzodiazepines decreased from 2011 to 2020. For those with psychiatric co-morbidities, the prescription rates of anti-epileptics and SNRIs increased, while the prescription rates of anti-epileptics, SSRIs, other antidepressants, and atypical psychotropics increased for those without such co-morbidities. The most commonly prescribed psychotropics were diazepam and alprazolam, excluding tramadol and tramadol–acetaminophen combination. For those with psychiatric co-morbidities, the prescription rates of gabapentin and fentanyl increased, while for those without such co-morbidities, the prescription rates of lorazepam, fentanyl, escitalopram and quetiapine increased.
Conclusion
A significant number of older Korean patients with OA were prescribed psychotropic drugs in the absence of comorbidities requiring such drugs, including drugs that have little effect on OA and unfavorable safety profiles in older adults.
9.Psychotropic Drug Use in Korean Patients With Osteoarthritis
Seong-Hun KANG ; Hyun Ah KIM ; Insun CHOI ; Chan Mi PARK ; Hoyol JHANG ; Jinhyun KIM ; Dong Jin GO ; Suhyun JANG
Journal of Korean Medical Science 2025;40(12):e53-
Background:
There are few safe effective ways to relieve osteoarthritis (OA) pain; as a result, off-label psychotropic drug prescriptions have increased worldwide. This study examined the change in psychotropic drug prescriptions for patients with OA from 2011 to 2020 using the Korean National Health Insurance Service dataset.
Methods:
The study population consisted of patients with hip or knee OA aged ≥ 65 years.Psychotropic drugs included opioids, benzodiazepines, non-benzodiazepine hypnotics (Z-drugs), anti-epileptics, tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), typical antipsychotics, atypical antipsychotics, and anxiolytics. The prevalence and long-term (> 3 months) prescription rates of psychotropic drugs in OA patients were calculated.
Results:
The study included 1,821,158 patients with OA (mean age 71.7 years; 65.32% female).Of the cohort, 49% had comorbidities for which psychotropics were indicated. The prevalence of psychotropic prescriptions decreased from 58.2% to 52.0% in 2018 and then leveled off.The long-term prescription rate remained constant until 2018 and then increased slightly.The most commonly prescribed psychotropics were opioids and long- and short-acting benzodiazepines. The prescription rates of opioids and long-acting benzodiazepines decreased from 2011 to 2020. For those with psychiatric co-morbidities, the prescription rates of anti-epileptics and SNRIs increased, while the prescription rates of anti-epileptics, SSRIs, other antidepressants, and atypical psychotropics increased for those without such co-morbidities. The most commonly prescribed psychotropics were diazepam and alprazolam, excluding tramadol and tramadol–acetaminophen combination. For those with psychiatric co-morbidities, the prescription rates of gabapentin and fentanyl increased, while for those without such co-morbidities, the prescription rates of lorazepam, fentanyl, escitalopram and quetiapine increased.
Conclusion
A significant number of older Korean patients with OA were prescribed psychotropic drugs in the absence of comorbidities requiring such drugs, including drugs that have little effect on OA and unfavorable safety profiles in older adults.
10.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80

Result Analysis
Print
Save
E-mail