中文 | English
Return
Total: 5 , 1/1
Show Home Prev Next End page: GO
Author:(Kaname YOSHIDA)

1.The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study

Munetoshi AKAZAWA ; Kazunori HASHIMOTO ; Katsuhiko NODA ; Kaname YOSHIDA

Obstetrics & Gynecology Science 2021;64(3):266-273

2.The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study

Munetoshi AKAZAWA ; Kazunori HASHIMOTO ; Katsuhiko NODA ; Kaname YOSHIDA

Obstetrics & Gynecology Science 2021;64(3):266-273

3.The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma

Yusuke TOYOHARA ; Kenbun SONE ; Katsuhiko NODA ; Kaname YOSHIDA ; Shimpei KATO ; Masafumi KAIUME ; Ayumi TAGUCHI ; Ryo KUROKAWA ; Yutaka OSUGA

Journal of Gynecologic Oncology 2024;35(3):e24-

4.The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma

Yusuke TOYOHARA ; Kenbun SONE ; Katsuhiko NODA ; Kaname YOSHIDA ; Shimpei KATO ; Masafumi KAIUME ; Ayumi TAGUCHI ; Ryo KUROKAWA ; Yutaka OSUGA

Journal of Gynecologic Oncology 2024;35(3):e24-

5.The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma

Yusuke TOYOHARA ; Kenbun SONE ; Katsuhiko NODA ; Kaname YOSHIDA ; Shimpei KATO ; Masafumi KAIUME ; Ayumi TAGUCHI ; Ryo KUROKAWA ; Yutaka OSUGA

Journal of Gynecologic Oncology 2024;35(3):e24-

Sort by Result Analysis

Display Mode

Output Records




File Type





Total: 5 , 1/1 Show Home Prev Next End page: GO