1.The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study
Munetoshi AKAZAWA ; Kazunori HASHIMOTO ; Katsuhiko NODA ; Kaname YOSHIDA
Obstetrics & Gynecology Science 2021;64(3):266-273
Objective:
Most women with early stage endometrial cancer have a favorable prognosis. However, there is a subset of patients who develop recurrence. In addition to the pathological stage, clinical and therapeutic factors affect the probability of recurrence. Machine learning is a subtype of artificial intelligence that is considered effective for predictive tasks. We tried to predict recurrence in early stage endometrial cancer using machine learning methods based on clinical data.
Methods:
We enrolled 75 patients with early stage endometrial cancer (International Federation of Gynecology and Obstetrics stage I or II) who had received surgical treatment at our institute. A total of 5 machine learning classifiers were used, including support vector machine (SVM), random forest (RF), decision tree (DT), logistic regression (LR), and boosted tree, to predict the recurrence based on 16 parameters (age, body mass index, gravity/parity, hypertension/diabetic, stage, histological type, grade, surgical content and adjuvant chemotherapy). We analyzed the classification accuracy and the area under the curve (AUC).
Results:
The highest accuracy was 0.82 for SVM, followed by 0.77 for RF, 0.74 for LR, 0.66 for DT, and 0.66 for boosted trees. The highest AUC was 0.53 for LR, followed by 0.52 for boosted trees, 0.48 for DT, and 0.47 for RF. Therefore, the best predictive model for this analysis was LR.
Conclusion
The performance of the machine learning classifiers was not optimal owing to the small size of the dataset. The use of a machine learning model made it possible to predict recurrence in early stage endometrial cancer.
2.The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study
Munetoshi AKAZAWA ; Kazunori HASHIMOTO ; Katsuhiko NODA ; Kaname YOSHIDA
Obstetrics & Gynecology Science 2021;64(3):266-273
Objective:
Most women with early stage endometrial cancer have a favorable prognosis. However, there is a subset of patients who develop recurrence. In addition to the pathological stage, clinical and therapeutic factors affect the probability of recurrence. Machine learning is a subtype of artificial intelligence that is considered effective for predictive tasks. We tried to predict recurrence in early stage endometrial cancer using machine learning methods based on clinical data.
Methods:
We enrolled 75 patients with early stage endometrial cancer (International Federation of Gynecology and Obstetrics stage I or II) who had received surgical treatment at our institute. A total of 5 machine learning classifiers were used, including support vector machine (SVM), random forest (RF), decision tree (DT), logistic regression (LR), and boosted tree, to predict the recurrence based on 16 parameters (age, body mass index, gravity/parity, hypertension/diabetic, stage, histological type, grade, surgical content and adjuvant chemotherapy). We analyzed the classification accuracy and the area under the curve (AUC).
Results:
The highest accuracy was 0.82 for SVM, followed by 0.77 for RF, 0.74 for LR, 0.66 for DT, and 0.66 for boosted trees. The highest AUC was 0.53 for LR, followed by 0.52 for boosted trees, 0.48 for DT, and 0.47 for RF. Therefore, the best predictive model for this analysis was LR.
Conclusion
The performance of the machine learning classifiers was not optimal owing to the small size of the dataset. The use of a machine learning model made it possible to predict recurrence in early stage endometrial cancer.
3.The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma
Yusuke TOYOHARA ; Kenbun SONE ; Katsuhiko NODA ; Kaname YOSHIDA ; Shimpei KATO ; Masafumi KAIUME ; Ayumi TAGUCHI ; Ryo KUROKAWA ; Yutaka OSUGA
Journal of Gynecologic Oncology 2024;35(3):e24-
Objective:
Magnetic resonance imaging (MRI) is efficient for the diagnosis of preoperative uterine sarcoma; however, misdiagnoses may occur. In this study, we developed a new artificial intelligence (AI) system to overcome the limitations of requiring specialists to manually process datasets and a large amount of computer resources.
Methods:
The AI system comprises a tumor image filter, which extracts MRI slices containing tumors, and sarcoma evaluator, which diagnoses uterine sarcomas. We used 15 types of MRI patient sequences to train deep neural network (DNN) models used by tumor filter and sarcoma evaluator with 8 cross-validation sets. We implemented tumor filter and sarcoma evaluator using ensemble prediction technique with 9 DNN models. Ten tumor filters and sarcoma evaluator sets were developed to evaluate fluctuation accuracy. Finally, AutoDiag-AI was used to evaluate the new validation dataset, including 8 cases of sarcomas and 24 leiomyomas.
Results:
Tumor image filter and sarcoma evaluator accuracies were 92.68% and 90.50%, respectively. AutoDiag-AI with the original dataset accuracy was 89.32%, with 90.47% sensitivity and 88.95% specificity, whereas AutoDiag-AI with the new validation dataset accuracy was 92.44%, with 92.25% sensitivity and 92.50% specificity.
Conclusion
Our newly established AI system automatically extracts tumor sites from MRI images and diagnoses them as uterine sarcomas without human intervention. Its accuracy is comparable to that of a radiologist. With further validation, the system could be applied for diagnosis of other diseases. Further improvement of the system's accuracy may enable its clinical application in the future.
4.The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma
Yusuke TOYOHARA ; Kenbun SONE ; Katsuhiko NODA ; Kaname YOSHIDA ; Shimpei KATO ; Masafumi KAIUME ; Ayumi TAGUCHI ; Ryo KUROKAWA ; Yutaka OSUGA
Journal of Gynecologic Oncology 2024;35(3):e24-
Objective:
Magnetic resonance imaging (MRI) is efficient for the diagnosis of preoperative uterine sarcoma; however, misdiagnoses may occur. In this study, we developed a new artificial intelligence (AI) system to overcome the limitations of requiring specialists to manually process datasets and a large amount of computer resources.
Methods:
The AI system comprises a tumor image filter, which extracts MRI slices containing tumors, and sarcoma evaluator, which diagnoses uterine sarcomas. We used 15 types of MRI patient sequences to train deep neural network (DNN) models used by tumor filter and sarcoma evaluator with 8 cross-validation sets. We implemented tumor filter and sarcoma evaluator using ensemble prediction technique with 9 DNN models. Ten tumor filters and sarcoma evaluator sets were developed to evaluate fluctuation accuracy. Finally, AutoDiag-AI was used to evaluate the new validation dataset, including 8 cases of sarcomas and 24 leiomyomas.
Results:
Tumor image filter and sarcoma evaluator accuracies were 92.68% and 90.50%, respectively. AutoDiag-AI with the original dataset accuracy was 89.32%, with 90.47% sensitivity and 88.95% specificity, whereas AutoDiag-AI with the new validation dataset accuracy was 92.44%, with 92.25% sensitivity and 92.50% specificity.
Conclusion
Our newly established AI system automatically extracts tumor sites from MRI images and diagnoses them as uterine sarcomas without human intervention. Its accuracy is comparable to that of a radiologist. With further validation, the system could be applied for diagnosis of other diseases. Further improvement of the system's accuracy may enable its clinical application in the future.
5.The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma
Yusuke TOYOHARA ; Kenbun SONE ; Katsuhiko NODA ; Kaname YOSHIDA ; Shimpei KATO ; Masafumi KAIUME ; Ayumi TAGUCHI ; Ryo KUROKAWA ; Yutaka OSUGA
Journal of Gynecologic Oncology 2024;35(3):e24-
Objective:
Magnetic resonance imaging (MRI) is efficient for the diagnosis of preoperative uterine sarcoma; however, misdiagnoses may occur. In this study, we developed a new artificial intelligence (AI) system to overcome the limitations of requiring specialists to manually process datasets and a large amount of computer resources.
Methods:
The AI system comprises a tumor image filter, which extracts MRI slices containing tumors, and sarcoma evaluator, which diagnoses uterine sarcomas. We used 15 types of MRI patient sequences to train deep neural network (DNN) models used by tumor filter and sarcoma evaluator with 8 cross-validation sets. We implemented tumor filter and sarcoma evaluator using ensemble prediction technique with 9 DNN models. Ten tumor filters and sarcoma evaluator sets were developed to evaluate fluctuation accuracy. Finally, AutoDiag-AI was used to evaluate the new validation dataset, including 8 cases of sarcomas and 24 leiomyomas.
Results:
Tumor image filter and sarcoma evaluator accuracies were 92.68% and 90.50%, respectively. AutoDiag-AI with the original dataset accuracy was 89.32%, with 90.47% sensitivity and 88.95% specificity, whereas AutoDiag-AI with the new validation dataset accuracy was 92.44%, with 92.25% sensitivity and 92.50% specificity.
Conclusion
Our newly established AI system automatically extracts tumor sites from MRI images and diagnoses them as uterine sarcomas without human intervention. Its accuracy is comparable to that of a radiologist. With further validation, the system could be applied for diagnosis of other diseases. Further improvement of the system's accuracy may enable its clinical application in the future.