1.Comparison of seizure induced by different drugs in ICR Mice.
Lin HU ; Huadan ZHANG ; Yatian CHEN ; Nan HUA ; Linhui ZENG
Journal of Zhejiang University. Medical sciences 2013;42(6):609-614
OBJECTIVETo compare seizure induced by different epileptic drugs in ICR mice.
METHODSMale adult ICR mice were injected with pilocarpine (Pilo), kainic acid (KA) and pentylenetetrazole (PTZ) to induce status epilepticus (SE). After 2 h of SE, seizures were terminated by injection of diazepam. Mice were sacrificed and sectioned for assessment of neuronal cell death by Fluro-Jade B staining after 7 d and mossy fiber sprouting by Timm staining after 28 d, respectively. Spontaneous seizures were detected by video for 28 d.
RESULTSPilo and KA induced typical SE in ICR mice, which was identical to those observed in rats and C57/BL6 mice. Timm staining showed evident mossy fiber sprouting in both Pilo and KA treated mice. The incidences of spontaneous seizure were 57.1% and 35.7% in Pilo and KA treated mice, respectively. Mice treated with PTZ represented kindling model. No mossy fiber sprouting and spontaneous seizures were observed. No cell death was detected in all three groups.
CONCLUSIONSimilar seizure pattern is observed in ICR mice as in rats and C57/BL6 mice. Both Pilo and KA model are the ideal models for chronic temporal lobe epilepsy. ICR mice can be widely used as a cheaper substitute in epilepsy research.
Animals ; Disease Models, Animal ; Epilepsy ; chemically induced ; Kainic Acid ; toxicity ; Male ; Mice ; Mice, Inbred ICR ; Pentylenetetrazole ; toxicity ; Pilocarpine ; toxicity
2.c-JUN Expression and Apoptotic Cell Death in Kainate-Induced Temporal Lobe Epilepsy.
Min Cheol LEE ; Jin Lee RHO ; Myung Kyu KIM ; Young Jong WOO ; Jae Hyoo KIM ; Sang Chae NAM ; Jung Jin SUH ; Woong Ki CHUNG ; Jai Dong MOON ; Hyung Ihl KIM
Journal of Korean Medical Science 2001;16(5):649-656
Following kainate (KA)-induced epilepsy, rat hippocampal neurons strongly ex-press immediate early gene (IEG) products, i.e., c-FOS and c-JUN, and neural stress protein, HSP72. Prolonged expression of c-JUN and c-FOS 48 hr after cerebral ischemia has been underwent delayed neuronal death. However, it is not yet clear whether IEGs actually assume the essential roles in the cell death process or simply as a by-product due to external stimuli because of the prolonged expression of c-FOS, more than one week, on intact CA2 neurons of the hippocampus in a KA-induced epilepsy model. This study investigated the relationships between prolonged expression of c-JUN and hippocampal neuronal apoptosis in a KA-induced epilepsy model. Epileptic seizure was induced in rats by a single microinjection of KA (1g/l) into the left amygdala. Characteristic seizures and hippocampal neuronal injury were developed. The expression of c-JUN was evaluated by immunohistochemistry, and neuronal apoptosis by in situ end labeling. The seizures were associated with c-JUN expression in the hippocampal neurons, of which the level showed a positive correlation with that of apoptosis. Losses of hippocampal neurons, especially in the CA3 region, were partly caused by apoptotic cell death via a c-JUN-mediated signaling pathway. This is thought to be an important component in the pathogenesis of hippocampal neuronal injury via KA-induced epilepsy.
Animal
;
*Apoptosis
;
Epilepsy, Temporal Lobe/chemically induced/*metabolism/pathology
;
Hippocampus/*chemistry/pathology
;
Immunohistochemistry
;
Kainic Acid/*toxicity
;
Male
;
Proto-Oncogene Proteins c-jun/*analysis
;
Rats
;
Rats, Wistar
3.Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures.
Jie YU ; Yao CHENG ; Yaru CUI ; Yujie ZHAI ; Wenshen ZHANG ; Mengdi ZHANG ; Wenyu XIN ; Jia LIANG ; Xiaohong PAN ; Qiaoyun WANG ; Hongliu SUN
Neuroscience Bulletin 2022;38(11):1347-1364
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Rats
;
Animals
;
Kainic Acid/toxicity*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Fibronectins/metabolism*
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Epilepsy/metabolism*
;
Seizures/prevention & control*
4.Calcium/Calmodulin Kinase II Activity of Hippocampus in Kainate-Induced Epilepsy.
Min Cheol LEE ; Sung Soo BAN ; Young Jong WOO ; Seung U KIM
Journal of Korean Medical Science 2001;16(5):643-648
This study investigated calcium/calmodulin kinase II (CaMKII) activity related to long-standing neuronal injury of the hippocampus in kainate (KA)-induced experimental temporal lobe epilepsy. Epileptic seizure was induced by injection of KA (1 g/L) dissolved in phosphate buffer (0.1 M, pH 7.4) into the left amygdala. Clinical seizures, histopathologic changes and CaMKII activity of the hippocampus were evaluated. Characteristic early limbic and late seizures were developed. Hippocampal CaMKII activity increased significantly 4 and 8 weeks after intra-amygdaloid injection of KA, when late seizures developed. The histopathologic changes of the hippocampus included swelling of neuronal cytoplasm with nuclear pyknosis and loss of neurons in CA3 during this period. The increased activity of CaMKII may correlate with appearance of distant damage in the hippocampus. The above results indicate that intra-amygdaloid injection of KA produces excitatory signals for ipsilateral CA3 neurons in the hippocampus and that subsequently increased levels of CaMKII in postsynaptic neurons induce neuronal injury via phosphorylation of N-methyl-D-aspartate type glutamate receptor.
Animal
;
Ca(2+)-Calmodulin Dependent Protein Kinase/*metabolism
;
Epilepsy, Temporal Lobe/chemically induced/*enzymology/pathology
;
Hippocampus/*enzymology/pathology
;
Kainic Acid/*toxicity
;
Long-Term Potentiation/drug effects
;
Male
;
Rats
;
Rats, Wistar
5.Effects of rutin on oxidative stress in mice with kainic acid-induced seizure.
Marjan NASSIRI-ASL ; E-mail: MNASSIRIASL@QUMS.AC.IR. ; Taghi Naserpour FARIVAR ; Esmail ABBASI ; Hamid Reza SADEGHNIA ; Mehdi SHEIKHI ; Mina LOTFIZADEH ; Parisa BAZAHANG
Journal of Integrative Medicine 2013;11(5):337-342
OBJECTIVEFlavonoids are present in foods such as fruits and vegetables. Several studies have demonstrated a relationship between the consumption of flavonoid-rich foods and prevention of human disease, including neurodegenerative disorders. We assessed the effect of rutin (quercetin-3-O-rutinoside) on oxidative stress in kainic acid (KA)-induced seizure.
METHODSThirty-six BALB/c mice were randomly divided into three groups. In the control group, saline (intra-peritoneal, i.p.) was administered for 7 d, and on the last day, KA (10 mg/kg, i.p.) was injected 30 min after administration of saline. In rutin groups, mice were pretreated with rutin (100 and 200 mg/kg, i.p.) for 7 d, and on the last day, KA (10 mg/kg, i.p.) was injected 30 min after administration of rutin. Subsequently, behavioural changes were observed in mice. Lipid peroxidation and oxidative stress were measured respectively in the early and late phases after KA-induced seizures.
RESULTSSeizure scores in the rutin groups were significantly lower than those in the control group (P < 0.01). Furthermore, rutin dose-dependently inhibited the number of wet-dog shakes (WDS) (P < 0.05). Malondialdehyde level in the hippocampus of the rutin groups was significantly lower than that in the hippocampus of the control group on days 1 and 21 after KA administration. In the rutin groups, the thiol levels observed on day 1 after KA administration were higher than that in the control group (P < 0.01).
CONCLUSIONThese results indicate that rutin has potential anticonvulsant and antioxidative activities against oxidative stress in KA-induced seizure in mice.
Animals ; Dose-Response Relationship, Drug ; Kainic Acid ; toxicity ; Lipid Peroxidation ; drug effects ; Male ; Mice ; Mice, Inbred BALB C ; Oxidative Stress ; drug effects ; Rutin ; pharmacology ; Seizures ; chemically induced ; metabolism ; Sulfhydryl Compounds ; analysis
6.Environmental and health effects associated with Harmful Algal Bloom and marine algal toxins in China.
Biomedical and Environmental Sciences 2004;17(2):165-176
The frequency and scale of Harmful Algal Bloom (HAB) and marine algal toxin incidents have been increasing and spreading in the past two decades, causing damages to the marine environment and threatening human life through contaminated seafood. To better understand the effect of HAB and marine algal toxins on marine environment and human health in China, this paper overviews HAB occurrence and marine algal toxin incidents, as well as their environmental and health effects in this country. HAB has been increasing rapidly along the Chinese coast since the 1970s, and at least 512 documented HAB events have occurred from 1952 to 2002 in the Chinese mainland. It has been found that PSP and DSP toxins are distributed widely along both the northern and southern Chinese coasts. The HAB and marine algal toxin events during the 1990s in China were summarized, showing that the HAB and algal toxins resulted in great damages to local fisheries, marine culture, quality of marine environment, and human health. Therefore, to protect the coastal environment and human health, attention to HAB and marine algal toxins is urgently needed from the environmental and epidemiological view.
Amnesia
;
chemically induced
;
Animals
;
China
;
epidemiology
;
Ciguatoxins
;
toxicity
;
Diarrhea
;
chemically induced
;
Dinoflagellida
;
Environment
;
Eukaryota
;
chemistry
;
Eutrophication
;
Fisheries
;
Food Contamination
;
Foodborne Diseases
;
epidemiology
;
etiology
;
Humans
;
Kainic Acid
;
analogs & derivatives
;
poisoning
;
Lethal Dose 50
;
Marine Toxins
;
chemistry
;
poisoning
;
toxicity
;
Neurotoxicity Syndromes
;
etiology
;
Okadaic Acid
;
poisoning
;
Oxocins
;
poisoning
;
Paralysis
;
chemically induced
;
Seawater
;
Shellfish Poisoning
7.Akt Inhibitor Perifosine Prevents Epileptogenesis in a Rat Model of Temporal Lobe Epilepsy.
Feng ZHU ; Jiejing KAI ; Linglin CHEN ; Meiling WU ; Jingyin DONG ; Qingmei WANG ; Ling-Hui ZENG
Neuroscience Bulletin 2018;34(2):283-290
Accumulating data have revealed that abnormal activity of the mTOR (mammalian target of rapamycin) pathway plays an important role in epileptogenesis triggered by various factors. We previously reported that pretreatment with perifosine, an inhibitor of Akt (also called protein kinase B), abolishes the rapamycin-induced paradoxical increase of S6 phosphorylation in a rat model induced by kainic acid (KA). Since Akt is an upstream target in the mTOR signaling pathway, we set out to determine whether perifosine has a preventive effect on epileptogenesis. Here, we explored the effect of perifosine on the model of temporal epilepsy induced by KA in rats and found that pretreatment with perifosine had no effect on the severity or duration of the KA-induced status epilepticus. However, perifosine almost completely inhibited the activation of p-Akt and p-S6 both acutely and chronically following the KA-induced status epilepticus. Perifosine pretreatment suppressed the KA-induced neuronal death and mossy fiber sprouting. The frequency of spontaneous seizures was markedly decreased in rats pretreated with perifosine. Accordingly, rats pretreated with perifosine showed mild impairment in cognitive functions. Collectively, this study provides novel evidence in a KA seizure model that perifosine may be a potential drug for use in anti-epileptogenic therapy.
Animals
;
Anticonvulsants
;
pharmacology
;
Brain
;
drug effects
;
pathology
;
Convulsants
;
toxicity
;
Disease Models, Animal
;
Epilepsy, Temporal Lobe
;
chemically induced
;
pathology
;
Kainic Acid
;
toxicity
;
Male
;
Neurons
;
drug effects
;
pathology
;
Phosphorylcholine
;
analogs & derivatives
;
pharmacology
;
Protein Kinase Inhibitors
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
antagonists & inhibitors
;
Rats
;
Rats, Sprague-Dawley
;
Status Epilepticus
;
chemically induced
;
pathology
8.Cell type-specific upregulation of myristoylated alanine-rich C kinase substrate and protein kinase C-alpha, -beta I, -beta II, and -delta in microglia following kainic acid-induced seizures.
Su Yong EUN ; Eun Hae KIM ; Kee Seok KANG ; Hwa Jung KIM ; Sangmee Ahn JO ; Soon Jong KIM ; Su Hyun JO ; Sang Jeong KIM ; Perry J BLACKSHEAR ; Jun KIM
Experimental & Molecular Medicine 2006;38(3):310-319
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed protein kinase C (PKC) substrate and has been implicated in actin cytoskeletal rearrangement in response to extracellular stimuli. Although MARCKS was extensively examined in various cell culture systems, the physiological function of MARCKS in the central nervous system has not been clearly understood. We investigated alterations of cellular distribution and phosphorylation of MARCKS in the hippocampus following kainic acid (KA)-induced seizures. KA (25 mg/kg, i.p.) was administered to eight to nine week-old C57BL/6 mice. Behavioral seizure activity was observed for 2 h after the onset of seizures and was terminated with diazepam (8 mg/kg, i.p.). The animals were sacrificed and analyzed at various points in time after the initiation of seizure activity. Using double-labeling immunofluorescence analysis, we demonstrated that the expression and phosphorylation of MARCKS was dramatically upregulated specifically in microglial cells after KA-induced seizures, but not in other types of glial cells. PKC alpha, beta I, beta II and delta, from various PKC isoforms examined, also were markedly upregulated, specifically in microglial cells. Moreover, immunoreactivities of phosphorylated MARCKS were co-localized in the activated microglia with those of the above isoforms of PKC. Taken together, our in vivo data suggest that MARCKS is closely linked to microglial activation processes, which are important in pathological conditions, such as neuroinflammation and neurodegeneration.
Up-Regulation/drug effects
;
Time Factors
;
Seizures/chemically induced/*metabolism
;
Protein Kinase C-delta/analysis
;
Protein Kinase C-alpha/analysis
;
Protein Kinase C/*analysis
;
Protein Biosynthesis/drug effects
;
Phosphorylation/drug effects
;
Microscopy, Confocal
;
Microglia/cytology/drug effects/*metabolism
;
Mice, Inbred C57BL
;
Mice
;
Membrane Proteins/*analysis/metabolism
;
Kainic Acid/*toxicity
;
Isoenzymes/analysis
;
Intracellular Signaling Peptides and Proteins/*analysis/metabolism
;
Immunohistochemistry
;
Animals
9.Role of gamma-aminobutyric acid B (GABA B) receptors in the regulation of kainic acid-induced cell death in mouse hippocampus.
Han Kyu LEE ; Young Jun SEO ; Seong Soo CHOI ; Min Soo KWON ; Eon Jeong SHIM ; Jin Young LEE ; Hong Won SUH
Experimental & Molecular Medicine 2005;37(6):533-545
Kainic acid (KA) is well-known as an excitatory, neurotoxic substance. In mice, KA administered intracerebroventricularly (i.c.v.) lead to morphological damage of hippocampus expecially concentrated on the CA3 pyramidal neurons. In the present study, the possible role of gamma-aminobutyric acid B (GABA B) receptors in hippocampal cell death induced by KA (0.1 microgram) administered i.c.v. was examined. 5-Aminovaleric acid (5-AV; GABA B receptors antagonist, 20 microgram) reduced KA-induced CA3 pyramidal cell death. KA increased the phosphorylated extracellular signal-regulated kinase (p-ERK) and Ca2+ /calmodulin-dependent protein kinase II (p-CaMK II) immunoreactivities (IRs) 30 min after KA treatment, and c-Fos, c-Jun IR 2 h, and glial fibrillary acidic protein (GFAP), complement receptor type 3 (OX-42) IR 1 day in hippocampal area in KA-injected mice. 5-AV attenuated KA-induced p-CaMK II, GFAP and OX-42 IR in the hippocampal CA3 region. These results suggest that p-CaMK II may play as an important regulator on hippocampal cell death induced by KA administered i.c.v. in mice. Activated astrocytes, which was presented by GFAP IR, and activated microglia, which was presented by the OX-42 IR, may be a good indicator for measuring the cell death in hippocampal regions by KA excitotoxicity. Furthermore, it showed that GABA B receptors appear to be involved in hippocampal CA3 pyramidal cell death induced by KA administered i.c.v. in mice.
Amino Acids, Neutral/pharmacology
;
Animals
;
Ca(2+)-Calmodulin Dependent Protein Kinase/metabolism
;
Cell Death/drug effects
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Glial Fibrillary Acidic Protein/metabolism
;
Hippocampus/anatomy & histology/*cytology/*drug effects
;
Kainic Acid/*toxicity
;
Mice
;
Mice, Inbred ICR
;
Mossy Fibers, Hippocampal/drug effects/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-fos/metabolism
;
Proto-Oncogene Proteins c-jun/metabolism
;
Receptors, GABA-B/*metabolism
;
Research Support, Non-U.S. Gov't