1.PKM2, the "K+ sink" in the tumor interstitial fluid.
Wenjing NA ; Wenfeng ZENG ; Kai SONG ; Youwang WANG ; Luoyang WANG ; Ziran ZHAO ; Lingtao JIN ; Ping ZHU ; Wei LIANG
Protein & Cell 2025;16(4):303-308
2.Study on the characteristics of lymphocyte-specfic protein-tyrosine kinase methylation in the peripheral blood circulation of patients with rheumatoid arthritis
Lingxia XU ; Cen CHANG ; Ping JIANG ; Kai WEI ; Jia′nan ZHAO ; Yixin ZHENG ; Yu SHAN ; Yiming SHI ; Hua Ye JIN ; Yi SHEN ; Shicheng GUO ; Dongyi HE ; Jia LIU
Chinese Journal of Rheumatology 2024;28(3):155-161
Objective:To analyze the methylation characteristics of the lymphocyte-specific protein-tyrosine kinase (LCK) promoter region in the peripheral blood circulation of rheumatoid arthritis (RA) patients and its correlation with clinical indicators.Methods:Targeted methylation sequencing was used to compare the methylation levels of 7 CpG sites in the LCK promoter region in the peripheral blood of RA patients with healthy controls (HC) and osteoarthritis (OA) patients. Correlation analysis and ROC curve construction were performed with clinical information.Results:Non-parametric tests revealed that compared with HC [0.53(0.50, 0.57)] and OA patients [0.59(0.54, 0.62), H=47.17, P<0.001], RA patients [0.63(0.59, 0.68)] exhibited an overall increase in methylation levels. Simultaneously, when compared with the HC group [0.38(0.35, 0.41), 0.59(0.55, 0.63), 0.60(0.55, 0.64), 0.59(0.55, 0.63), 0.58(0.53, 0.62), 0.45(0.43, 0.49), 0.57(0.54, 0.61)], the RA group [0.46(0.42, 0.49), 0.70(0.65, 0.75), 0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] showed a significant elevation in methylation levels at CpG sites cg05350315_60, cg05350315_80, cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-5.63, -5.89, -5.91, -5.89, -5.98, -5.95, -5.95, all P<0.001). Compared with the OA group [0.65(0.59, 0.69), 0.65(0.60, 0.69), 0.64(0.58, 0.68), 0.50(0.45, 0.54), 0.63(0.58, 0.67)], the RA group [0.70(0.66, 0.76), 0.70(0.65, 0.75), 0.69(0.64, 0.74), 0.55(0.51, 0.59), 0.68(0.63, 0.73)] exhibited a significant increase in methylation levels at CpG sites cg05350315_95, cg05350315_101, cg05350315_104, cg05350315_128, and cg05350315_142, with statistically significant differences ( Z=-3.56, -3.52, -3.60, -3.67, -3.62; P=0.036, 0.042, 0.031, 0.030, 0.030). Furthermore, Pearson correlation coefficient analysis revealed a positive correlation between the overall methylation level in this region and C-reactive protein (CRP) ( r=0.19, P=0.004) and erythrocyte sedimentation rate ( r=0.14, P=0.035). The overall methylation level of the LCK promoter region in the CRP (low) group [0.63 (0.58, 0.68)] was higher than that in the CRP (high) group [0.65(0.61, 0.70)], with statistically significant differences ( Z=2.60, P=0.009). Finally, by constru-cting a ROC curve, the discriminatory efficacy of peripheral blood LCK promoter region methylation levels for identifying RA patients, especially seronegative RA patients, from HC and OA groups was validated, with an AUC value of 0.78 (95% CI: 0.63, 0.93). Conclusion:This study provides insights into the methylation status and methylation haplotype patterns of the LCK promoter region in the peripheral blood of RA patients. The overall methylation level in this region is positively correlated with the level of inflammation and can be used to differentiate seronegative RA patients from the HC and OA patients.
3.Expression profile and function of miRNAs in macrophages infected with Mycobacterium
Ping-ping JIA ; Yi ZHANG ; Shi-ze PENG ; Qian-qian ZHAO ; Xiao-xiao WU ; Fang-qi SHEN ; Kai SUN ; Shan CEN
Acta Pharmaceutica Sinica 2024;59(6):1674-1679
The interaction between
4.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Agreement study of anterior segment parameters measured by two kinds of ocular biometry based on imaging principle of Scheimpflug
Zhen-Bo ZHAO ; Yu-Xi DING ; Kai-Li TANG ; Huan-Ping WANG ; Ji-Kun YANG ; Li-Wei MA
International Eye Science 2023;23(12):2100-2103
AIM: To compare the differences and agreement of anterior segment biometric parameters of myopic patients measured by domestic Scansys and the imported Sirius based on the principle of Scheimpflug imaging technique.METHODS: In this case series study, 103 cases(103 eyes)that underwent pre-refractive surgery(including small incision lenticule extraction, femtosecond laser-assisted in situ keratomileusis, transepithelial photorefractive keratectomy and implantable contact lens implantation)at Aier Excellent Eye Hospital from May 2022 to October 2022 were recruited. Preoperative keratometry(Km), central corneal thickness(CCT), anterior chamber depth(ACDEndo.), anterior chamber angle(ACA), anterior chamber volume(ACV), white to white(WTW)of patients were recorded.RESULTS: The results of Km, CCT, ACA, and WTW measured by Scansys and Sirius were 42.88(41.54, 44.60)and 42.98(41.56, 44.52)D,(541.52±29.08)and(549.55±29.62)μm, 42.70°±2.67° and 46.63°±5.13°, 12.10±0.60 and 11.98±0.47 mm, respectively, showing the difference was statistically significant(all P<0.01). The ACV measured by Scansys and Sirius was 194.26±31.06 and 191.47±25.65 mm3, and ACDEndo. was 3.40(3.17, 3.57)and 3.43(3.19, 3.56)mm, with no statistically significant difference(all P>0.05). The range of Km, CCT, ACA, ACDEndo., ACV and WTW values measured by the two instruments was small, with an average difference close to zero, and the points percentage of 95% limits of agreement(LoA)was <5%, which is of good consistency.CONCLUSIONS: Scansys and Sirius have small differences and good agreement in the parameters, which can be replaced by each other in clinical practice. Scansys could theoretically be used to extrapolate the implantable contact lens model or could be a new option for anterior segment parameter measurements.
7.2023 China Guidelines for Lipid Management.
Jian-Jun LI ; Shui-Ping ZHAO ; Dong ZHAO ; Guo-Ping LU ; Dao-Quan PENG ; Jing LIU ; Zhen-Yue CHEN ; Yuan-Lin GUO ; Na-Qiong WU ; Sheng-Kai YAN ; Zeng-Wu WANG ; Run-Lin GAO
Journal of Geriatric Cardiology 2023;20(9):621-663
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death among urban and rural residents in China, and elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for ASCVD. Considering the increasing burden of ASCVD, lipid management is of the utmost importance. In recent years, research on blood lipids has made breakthroughs around the world, hence a revision of China guidelines for lipid management is imperative, especially since the target lipid levels in the general population vary in respect to the risk of ASCVD. The level of LDL-C, which can be regarded as appropriate in a population without frisk factors, can be considered abnormal in people at high risk of developing ASCVD. As a result, the "Guidelines for the prevention and treatment of dyslipidemia" were adapted into the "China Guidelines for Lipid Management" (henceforth referred to as the new guidelines) by an Experts' committee after careful deliberation. The new guidelines still recommend LDL-C as the primary target for lipid control, with CVD risk stratification to determine its target value. These guidelines recommend that moderate intensity statin therapy in adjunct with a heart-healthy lifestyle, be used as an initial line of treatment, followed by cholesterol absorption inhibitors or/and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, as necessary. The new guidelines provide guidance for lipid management across various age groups, from children to the elderly. The aim of these guidelines is to comprehensively improve the management of lipids and promote the prevention and treatment of ASCVD by guiding clinical practice.
8.Effects of porcine urinary bladder matrix on motility and polarization of bone marrow-derived macrophages in mice.
Xiao Yu TANG ; Chen Yang LIU ; Guo Ping CHU ; Xiao Xiao LI ; Kai HU ; Peng ZHAO ; Guo Zhong LYU
Chinese Journal of Burns 2023;39(1):25-34
Objective: To explore the effects of porcine urinary bladder matrix (UBM) on the motility and polarization of bone marrow-derived macrophages in mice, so as to provide evidence for the rational selection of stent in clinical wound repair. Methods: The method of experimental research was used. The microstructure of porcine UBM and absorbable dressing was observed under scanning electron microscope. Polyacrylamide gel electrophoresis was used to observe the protein distribution of the two stent extracts. The primary macrophages were induced from bone marrow-derived cells isolated from six 6-8-week-old male C57BL/6J mice (mouse age, sex, and strain, the same below) and identified. Three batches of macrophages were divided into porcine UBM extract group and absorbable dressing extract group. The cells in each group were cultured with Dulbecco's modified Eagle medium/F12 medium containing the corresponding extracts. The cell migration rate was detected and calculated on 1, 3, and 7 d after scratching by scratch test. The number of migrated cells at 12 and 24 h of culture was detected by Transwell experiment. The percentages of CD206 and CD86 positive cells at 24 h of culture was detected by flow cytometer. The numbers of sample in the above cell experiments were all 3. An incision was prepared on the left and right back of twelve mice, respectively. The left incision of each mouse was included in porcine UBM group and the right incision was included in absorbable dressing group, and the corresponding stents were implanted into the incisions respectively. On post operation day (POD) 7 and 14, the number of inflammatory cells infiltrated in the stent was detected by hematoxylin-eosin staining; the number of F4/80, transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and matrix metalloprotein-9 (MMP-9) positive cells and type Ⅰ collagen deposition in stents were observed by immunohistochemistry; the percentages of F4/80, CD86, and CD206 positive cells were observed by immunofluorescence staining. The numbers of sample in the above animal experiments were all 6. Data were statistically analyzed with analysis of variance for factorial design, analysis of variance for repeated measurement, and independent sample t test. Results: Porcine UBM has a dense basement membrane structure on one side and porous propria containing a fibrous structures on the other. Both sides of the absorbable dressing had three-dimensional porous structure. In the molecular weight range of (50-70)×103, multiple non-type Ⅰ collagen bands appeared in the lanes of porcine UBM extract, while no obvious bands appeared in the lanes of absorbable dressing extract. It had been identified that mouse bone marrow-derived cells had been successfully induced into macrophages. The cell migration rates in porcine UBM extract group were significantly higher than those in absorbable dressing extract group on 1, 3, and 7 d after scratching (with t values of 15.31, 19.76, and 20.58, respectively, P<0.05). The numbers of migrated cells in porcine UBM extract group were significantly more than those in absorbable dressing extract group at 12 and 24 h of culture (with t values of 12.20 and 33.26, respectively, P<0.05). At 24 h of culture, the percentage of CD86 positive cells in porcine UBM extract group ((1.27±0.19)%) was significantly lower than (7.34±0.14)% in absorbable dressing extract group (t=17.03, P<0.05);the percentage of CD206 positive cells in porcine UBM extract group was (73.4±0.7)%, significantly higher than (32.2±0.5)% in absorbable dressing extract group (t=119.10, P<0.05). On POD 7 and 14, the numbers of inflammatory cells infiltrated in the stents in porcine UBM group was significantly more than those in absorbable dressing group (with t values of 6.58 and 10.70, respectively, P<0.05). On POD 7 and 14, the numbers of F4/80, TGF-β1, VEGF, and MMP-9 positive cells in the stents in porcine UBM group were significantly more than those in absorbable dressing group (with t values of 46.11, 40.69, 13.90, 14.15, 19.79, 32.93, 12.16, and 13.21, respectively, P<0.05); type Ⅰ collagen deposition in the stents in porcine UBM group was more pronounced than that in absorbable dressing group; the percentages of CD206 positive cells in the stents in porcine UBM group were significantly higher than those in absorbable dressing group (with t values of 5.05 and 4.13, respectively, P<0.05), while the percentages of CD86 positive cells were significantly lower than those in absorbable dressing group (with t values of 20.90 and 19.64, respectively, P<0.05), and more M2-type macrophages were seen in the stents in porcine UBM group and more M1-type macrophages were seen in the stents in absorbable dressing group. Conclusions: Porcine UBM can enhance macrophage motility, induce M2 polarization and paracrine function, create a microenvironment containing growth factors such as TGF-β1 and MMP-9 tissue remodeling molecules, and promote tissue regeneration and extracellular matrix remodeling in mice.
Mice
;
Male
;
Animals
;
Swine
;
Vascular Endothelial Growth Factor A
;
Urinary Bladder
;
Matrix Metalloproteinase 9
;
Mice, Inbred C57BL
;
Macrophages
;
Collagen
9.Comparison of the application methods and effects of skin flaps in the repair of defects in different parts of the nose according to the concept of aesthetic nosesubunits.
Chi HUA ; Wei Na ZHANG ; Yue Yue LYU ; Ji Zhen REN ; Su LIU ; Yuan Xin MIAO ; Zhao Yang SUI ; Kai Ping MAO
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58():339-344
Objective: To analyze the difference of application methods and effects of local flap in small and medium-sized defects of different aesthetic subunits of nose, in order to provide reference for clinical work. Methods: A retrospective analysis was made on 59 patients with external nasal masses and scars who underwent surgical treatment in the Department of Aesthetic Plastic Surgery of the Affiliated Hospital of Qingdao University from July 1, 2021 to January 30, 2022, including 27 females and 32 males, aged 15 to 69 years. Using Likert scale, the repair methods and effects of local flap for nasal soft tissue defects were evaluated and summarized from three aspects of texture, flatness and scar concealment. GraphPad Prism 5.0 software was used for data statistics and analysis. Results: The use of skin flaps to repair small and medium-sized areas of the nose could achieve satisfactory results. For patients with different subunits, in terms of skin flatness and scar concealment degree in the operation area, patients' satisfaction with the dorsal and lateral nasal areas was higher than that of the alar and tip areas, respectively (F=6.40, P=0.001; F=10.57, P<0.001). For patients with different skin flap repair methods, the satisfaction of patients with Z-plasty and Dufourmentel skin flap was higher than that of other skin flap repair methods (F=4.38, P=0.002), and the satisfaction of patients with Dufourmentel skin flap was the highest in the degree of scar concealment (F=2.57, P=0.038). Conclusions: In the small and medium-sized defects of the nose, the use of multiple local flaps can achieve good cosmetic effects and functional recovery. The operator should select the appropriate flap repair method according to the characteristics of different aesthetic subunits of the nose.

Result Analysis
Print
Save
E-mail