1.Cytotoxicity Studies of Light-oxygen-voltage (LOV) Domain Photosensitizers
Shuang XU ; Ben WAN ; Na SHA ; Kai-Hong ZHAO
Progress in Biochemistry and Biophysics 2025;52(2):487-500
ObjectiveAt present, the most commonly used photosensitizers in photodynamic therapy are still chemical photosensitizers, such as porphyrin and methylene blue, in order to specifically target cellular tissues, and thus poison cells, chemical photosensitizers need to use antibody conjugation or a transgenically encoded tag with affinity for the modified photosensitizing ligand, e.g. FlAsH, ReAsh or Halo Tag. Gene-encoded photosensitizers can directly poison cells by targeting specific cell compartments or organelles. However, currently developed gene-encoded photosensitizers have low reactive oxygen species production and low cytotoxicity, so it is necessary to continue to develop and obtain photosensitizers with higher reactive oxygen species production for the treatment of microbial infections and tumors. MethodsIn this study, we developed a photosensitizer LovPSO2 based on the light-oxygen-voltage (LOV) structural domain of phototropin-1B-like from Oryza sativa japonica. LovPSO2 was expressed in E. coli BL21(DE3) and purified to obtain protein samples, the purified protein samples were added 3 µmol/L singlet oxygen probe of SOSG and 5 µmol/L superoxide anion probe of DHE after fixed to A445=0.063±0.003, respectively, then measured every 2 min of singlet oxygen production for 10 min and every 1 min of superoxide anion production for 5 min under blue light irradiation at 445 nm, 70 µmol·m-2·s-1. ResultsThe results showed that LovPSO2 could produce a large amount of singlet oxygen under blue light irradiation at 445 nm, 70 µmol·m-2·s-1, and its singlet oxygen quantum yield was 0.61, but its superoxide anion yield was low, so in order to improve the superoxide anion yield of LovPSO2, a mutant with a relatively high superoxide anion yield was obtained by further development and design on its basis LovPRO2. The stability of proteins is crucial for research in drug development and drug delivery, among others. Temperature and light are the key factors affecting the production of reactive oxygen species (ROS) by photosensitive proteins and their stability, while the temperature in cell culture and mammals in vivo is about 37°C, and the temperature inside tumor cells is about 42-45°C. Therefore, we further analyzed the photostability of miniSOG, SOPP3, LovPSO2, and LovPRO2 and their thermostability at 37℃ and 45℃. The analysis of proteins thermostability showed that LovPSO2 and LovPRO2 had better thermostability at 37℃ and 45℃, respectively. Analysis of the photostability of the proteins showed that LovPRO2 had better photostability. In addition, to further determine the phototoxic effects of photosensitizers, LovPSO2 and LovPRO2 were expressed in E. coli BL21(DE3) and HeLa cells, respectively. The results showed that LovPSO2 and LovPRO2 had better phototoxicity to E. coli BL21(DE3) under blue light irradiation, and the cellular phototoxicity lethality was as high as 90% after 30 min of continuous light irradiation, but the phototoxicity was weaker in HeLa cells. The reason for this result may be that the intracellular environment exacerbated the photobleaching of FMN encapsulated by LovPSO2 and LovPRO2, respectively, which attenuated the damage of reactive oxygen species to animal cellular tissues, limiting its use as a mechanistic tool to study oxidative stress. ConclusionLovPSO2 and LovPRO2 can be used as antibacterial photosensitizers, which have broader application prospects in the food and medical fields.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
7.Thiotepa-containing conditioning for allogeneic hematopoietic stem cell transplantation in children with inborn errors of immunity: a retrospective clinical analysis.
Xiao-Jun WU ; Xia-Wei HAN ; Kai-Mei WANG ; Shao-Fen LIN ; Li-Ping QUE ; Xin-Yu LI ; Dian-Dian LIU ; Jian-Pei FANG ; Ke HUANG ; Hong-Gui XU
Chinese Journal of Contemporary Pediatrics 2025;27(10):1240-1246
OBJECTIVES:
To evaluate the safety and efficacy of thiotepa (TT)-containing conditioning regimens for allogeneic hematopoietic stem cell transplantation (HSCT) in children with inborn errors of immunity (IEI).
METHODS:
Clinical data of 22 children with IEI who underwent HSCT were retrospectively reviewed. Survival after HSCT was estimated using the Kaplan-Meier method.
RESULTS:
Nine patients received a traditional conditioning regimen (fludarabine + busulfan + cyclophosphamide/etoposide) and underwent peripheral blood stem cell transplantation (PBSCT). Thirteen patients received a TT-containing modified conditioning regimen (TT + fludarabine + busulfan + cyclophosphamide), including seven PBSCT and six umbilical cord blood transplantation (UCBT) cases. Successful engraftment with complete donor chimerism was achieved in all patients. Acute graft-versus-host disease occurred in 12 patients (one with grade III and the remaining with grade I-II). Chronic graft-versus-host disease occurred in one patient. The incidence of EB viremia in UCBT patients was lower than that in PBSCT patients (P<0.05). Over a median follow-up of 36.0 months, one death occurred. The 3-year overall survival (OS) rate was 100% for the modified regimen and 88.9% ± 10.5% for the traditional regimen (P=0.229). When comparing transplantation types, the 3-year OS rates were 100% for UCBT and 93.8% ± 6.1% for PBSCT (P>0.05), and the 3-year event-free survival rates were 100% and 87.1% ± 8.6%, respectively (P>0.05).
CONCLUSIONS
TT-containing conditioning for allogeneic HSCT in children with IEI is safe and effective. Both UCBT and PBSCT may achieve high success rates.
Humans
;
Retrospective Studies
;
Transplantation Conditioning/methods*
;
Thiotepa/therapeutic use*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Male
;
Female
;
Child, Preschool
;
Infant
;
Child
;
Transplantation, Homologous
;
Graft vs Host Disease
;
Adolescent
8.Advances of CRISPR/Cas-based Biosensor in Detection of Food-Borne Pathogens
Xiao-Yuan ZHANG ; Zhi-Hao YAO ; Kai-Yu HE ; Hong-Mei WANG ; Xia-Hong XU ; Zu-Fang WU ; Liu WANG
Chinese Journal of Analytical Chemistry 2024;52(4):469-480
Rapid and accurate detection methods for food-borne pathogens are essential to ensure food safety and human health.One promising innovation in this area is the clustered regularly interspaced short palindromic repeats/CRISPR-associated systems(CRISPR/Cas)biosensor,which utilizes Cas protein and CRISPR RNA(crRNA)ribonucleo protein to specifically recognize target genes,and converts target signals into detectable physical and chemical signals.The CRISPR/Cas biosensor shows many advantages,such as high specificity,programmability,and ease of use,making it promising to pathogen detection.This paper introduced the principles and characteristics of CRISPR/Cas systems,along with the strategies for signal recognition,amplification,and output based on different CRISPR/Cas biosensors,and their respective applications in food-borne pathogen detection.Furthermore,the construction principles and challenges of multiple biosensors based on CRISPR/Cas were explored,as well as their potential for simultaneous detection of multiple pathogens.Finally,the challenges and future development trends of CRISPR/Cas-based biosensors in rapid pathogen detection were discussed,aiming to provide valuable reference and inspiration for biosensor designers and food safety practitioners.
9.Immune Reconstitution after BTKi Treatment in Chronic Lymphocytic Leukemia
Yuan-Li WANG ; Pei-Xia TANG ; Kai-Li CHEN ; Guang-Yao GUO ; Jin-Lan LONG ; Yang-Qing ZOU ; Hong-Yu LIANG ; Zhen-Shu XU
Journal of Experimental Hematology 2024;32(1):1-5
Objective:To analyze the immune reconstitution after BTKi treatment in patients with chronic lymphocytic leukemia(CLL).Methods:The clinical and laboratorial data of 59 CLL patients admitted from January 2017 to March 2022 in Fujian Medical University Union Hospital were collected and analyzed retrospectively.Results:The median age of 59 CLL patients was 60.5(36-78).After one year of BTKi treatment,the CLL clones(CD5+/CD19+)of 51 cases(86.4%)were significantly reduced,in which the number of cloned-B cells decreased significantly from(46±6.1)× 109/L to(2.3±0.4)× 109/L(P=0.0013).But there was no significant change in the number of non-cloned B cells(CD19+minus CD5+/CD19+).After BTKi treatment,IgA increased significantly from(0.75±0.09)g/L to(1.31±0.1)g/L(P<0.001),while IgG and IgM decreased from(8.1±0.2)g/L and(0.52±0.6)g/L to(7.1±0.1)g/L and(0.47±0.1)g/L,respectively(P<0.001,P=0.002).BTKi treatment resulted in a significant change in T cell subpopulation of CLL patients,which manifested as both a decrease in total number of T cells from(2.1±0.1)× 109/L to(1.6±0.4)× 109/L and NK/T cells from(0.11±0.1)× 109/L to(0.07±0.01)× 109/L(P=0.042,P=0.038),both an increase in number of CD4+cells from(0.15±6.1)× 109/L to(0.19±0.4)× 109/L and CD8+cells from(0.27±0.01)× 109/L to(0.41±0.08)× 109/L(both P<0.001).BTKi treatment also up-regulated the expression of interleukin(IL)-2 while down-regulated IL-4 and interferon(IFN)-γ.However,the expression of IL-6,IL-10,and tumor necrosis factor(TNF)-α did not change significantly.BTKi treatment could also restored the diversity of TCR and BCR in CLL patients,especially obviously in those patients with complete remission(CR)than those with partial remission(PR).Before and after BTKi treatment,Shannon index of TCR in patients with CR was 0.02±0.008 and 0.14±0.001(P<0.001),while in patients with PR was 0.01±0.03 and 0.05±0.02(P>0.05),respectively.Shannon index of BCR in patients with CR was 0.19±0.003 and 0.33±0.15(P<0.001),while in patients with PR was 0.15±0.009 and 0.23±0.18(P<0.05),respectively.Conclusions:BTKi treatment can shrink the clone size in CLL patients,promote the expression of IgA,increase the number of functional T cells,and regulate the secretion of cytokines such as IL-2,IL-4,and IFN-γ.BTKi also promote the recovery of diversity of TCR and BCR.BTKi treatment contributes to the reconstitution of immune function in CLL patients.
10.Development of COVID-19 pandemic prevention and control policies in China
Rong-Feng ZHOU ; Kai SUN ; Fang XU ; Hong-Zhou LU
Fudan University Journal of Medical Sciences 2024;51(1):109-114
Since the World Health Organization(WHO)officially announced COVID-19 as a global pandemic in 2020,114 countries or regions in the world have been affected to varying degrees.The arrival of the post-epidemic era requires countries to take new epidemic prevention and control measures to deal with the problems and challenges that may arise in the future.In order to help China consolidate its epidemic prevention achievements over the years and gain a larger development window in the post-epidemic era,this study explored the changes in the global epidemic situation and the major national prevention and control policies in different countries,summarized the development and changes of China's epidemic prevention and control policies,and proposed new family-centered precision prevention and control measures that adapt to China's national conditions.

Result Analysis
Print
Save
E-mail