1.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
2.Urine Metabolites Changes in Acute Myocardial Infarction Rats via Metabolomic Analysis
Nian-Nian CHEN ; Jiao-Fang YU ; Peng WU ; Li LUO ; Ya-Qin BAI ; Li-Kai WANG ; Xiao-Qian LI ; Zhan-Peng LI ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(3):227-236
Objective To screen biomarkers for forensic identification of acute myocardial infarction (AMI) by non-targeted metabolomic studies on changes of urine metabolites in rats with AMI.Methods The rat models of the sham surgery group,AMI group and hyperlipidemia+acute myocardial infarction (HAMI) group were established.Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the changes of urine metabolic spectrometry in AMI rats.Principal compo-nent analysis,partial least squares-discriminant analysis,and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites.The MetaboAnalyst database was used to analyze the metabolic pathway enrichment and access the predictive ability of differential metabolites.Results A total of 40 and 61 differential metabolites associated with AMI and HAMI were screened,respec-tively.Among them,22 metabolites were common in both rat models.These small metabolites were mainly concentrated in the niacin and nicotinamide metabolic pathways.Within the 95% confidence in-terval,the area under the curve (AUC) values of receiver operator characteristic curve for N8-acetyl-spermidine,3-methylhistamine,and thymine were greater than 0.95.Conclusion N8-acetylspermidine,3-methylhistamine,and thymine can be used as potential biomarkers for AMI diagnosis,and abnormal metabolism in niacin and nicotinamide may be the main causes of AMI.This study can provide reference for the mechanism and causes of AMI identification.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Mid-term efficacy of China Net Childhood Lymphoma-mature B-cell lymphoma 2017 regimen in the treatment of pediatric Burkitt lymphoma.
Meng ZHANG ; Pan WU ; Yan Long DUAN ; Ling JIN ; Jing YANG ; Shuang HUANG ; Ying LIU ; Bo HU ; Xiao Wen ZHAI ; Hong Sheng WANG ; Yang FU ; Fu LI ; Xiao Mei YANG ; An Sheng LIU ; Shuang QIN ; Xiao Jun YUAN ; Yu Shuang DONG ; Wei LIU ; Jian Wen ZHOU ; Le Ping ZHANG ; Yue Ping JIA ; Jian WANG ; Li Jun QU ; Yun Peng DAI ; Guo Tao GUAN ; Li Rong SUN ; Jian JIANG ; Rong LIU ; Run Ming JIN ; Zhu Jun WANG ; Xi Ge WANG ; Bao Xi ZHANG ; Kai Lan CHEN ; Shu Quan ZHUANG ; Jing ZHANG ; Chun Ju ZHOU ; Zi Fen GAO ; Min Cui ZHENG ; Yonghong ZHANG
Chinese Journal of Pediatrics 2022;60(10):1011-1018
Objective: To analyze the clinical characteristics of children with Burkitt lymphoma (BL) and to summarize the mid-term efficacy of China Net Childhood Lymphoma-mature B-cell lymphoma 2017 (CNCL-B-NHL-2017) regimen. Methods: Clinical features of 436 BL patients who were ≤18 years old and treated with the CNCL-B-NHL-2017 regimen from May 2017 to April 2021 were analyzed retrospectively. Clinical characteristics of patients at disease onset were analyzed and the therapeutic effects of patients with different clinical stages and risk groups were compared. Survival analysis was performed by Kaplan-Meier method, and Cox regression was used to identify the prognostic factors. Results: Among 436 patients, there were 368 (84.4%) males and 68 (15.6%) females, the age of disease onset was 6.0 (4.0, 9.0) years old. According to the St. Jude staging system, there were 4 patients (0.9%) with stage Ⅰ, 30 patients (6.9%) with stage Ⅱ, 217 patients (49.8%) with stage Ⅲ, and 185 patients (42.4%) with stage Ⅳ. All patients were stratified into following risk groups: group A (n=1, 0.2%), group B1 (n=46, 10.6%), group B2 (n=19, 4.4%), group C1 (n=285, 65.4%), group C2 (n=85, 19.5%). Sixty-three patients (14.4%) were treated with chemotherapy only and 373 patients (85.6%) were treated with chemotherapy combined with rituximab. Twenty-one patients (4.8%) suffered from progressive disease, 3 patients (0.7%) relapsed, and 13 patients (3.0%) died of treatment-related complications. The follow-up time of all patients was 24.0 (13.0, 35.0) months, the 2-year event free survival (EFS) rate of all patients was (90.9±1.4) %. The 2-year EFS rates of group A, B1, B2, C1 and C2 were 100.0%, 100.0%, (94.7±5.1) %, (90.7±1.7) % and (85.9±4.0) %, respectively. The 2-year EFS rates was higher in group A, B1, and B2 than those in group C1 (χ2=4.16, P=0.041) and group C2 (χ2=7.21, P=0.007). The 2-year EFS rates of the patients treated with chemotherapy alone and those treated with chemotherapy combined with rituximab were (79.3±5.1)% and (92.9±1.4)% (χ2=14.23, P<0.001) respectively. Multivariate analysis showed that stage Ⅳ (including leukemia stage), serum lactate dehydrogenase (LDH)>4-fold normal value, and with residual tumor in the mid-term evaluation were risk factors for poor prognosis (HR=1.38,1.23,8.52,95%CI 1.05-1.82,1.05-1.43,3.96-18.30). Conclusions: The CNCL-B-NHL-2017 regimen show significant effect in the treatment of pediatric BL. The combination of rituximab improve the efficacy further.
Adolescent
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Burkitt Lymphoma/drug therapy*
;
Child
;
Disease-Free Survival
;
Female
;
Humans
;
Lactate Dehydrogenases
;
Lymphoma, B-Cell/drug therapy*
;
Male
;
Prognosis
;
Retrospective Studies
;
Rituximab/therapeutic use*
;
Treatment Outcome
5.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
Adolescent
;
Brain Abscess
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Hydrocephalus
;
Infant
;
Infant, Newborn
;
Male
;
Meningitis, Bacterial/epidemiology*
;
Retrospective Studies
;
Streptococcus agalactiae
;
Streptococcus pneumoniae
;
Subdural Effusion
;
beta-Lactamases
6.Maxing Shigan Decoction improves lung and colon tissue damage caused by influenza virus infection through JAK1/2-STAT1 signaling pathway.
Cheng ZHAO ; Xiang-Gang ZHANG ; Chun-Jing CHEN ; Xiao-Qi WANG ; Kai-Qin CHEN ; Chang LIU ; Rong XIAO ; Li HE ; Mei-Hong PENG ; Fang-Guo LU
China Journal of Chinese Materia Medica 2022;47(19):5306-5315
Based on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed. After intragastric administration of corresponding drugs or normal saline for 3 or 7 days, the body mass was measured, and lung index, spleen index, and thymus index were calculated. Based on hematoxylin-eosin(HE) staining, the pathological changes of lung tissue and colon tissue were observed. Enzyme-linked immunosorbent assay(ELISA) was used to detect serum levels of inflammatory factors interleukin-8(IL-8) and interferon-γ(IFN-γ), Western blot and real-time quantitative polymerase chain reaction(RT-qPCR) to determine the protein and mRNA levels of JAK1, JAK2, STAT1, interferon regulatory factor 9(IRF9), and IFN-γ in lung tissue and colon tissue. The results showed that after 3 and 7 days of administration, the body mass, spleen index, and thymus index were lower(P<0.05 or P<0.01), and the lung index was higher(P<0.01) in the model group than in the normal group. Moreover, the model group showed congestion, edema, and infiltration of a large number of lymphocytes and macrophages in the lung tissue, irregular structure of colon mucosa, ulceration and shedding of epithelial cells, and infiltration of a large number of inflammatory cells. The model group had higher levels of serum IFN-γ(P<0.01), higher protein and mRNA expression of JAK1, JAK2, STAT1, IRF9, IFN-γ in lung tissue(P<0.05 or P<0.01), higher level of JAK2 protein in colon tissue(P<0.01), and higher protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) than the normal group. Compared with the model group, Maxing Shigan Decoction group had high body mass, spleen index, and thymus index(P<0.05 or P<0.01), low lung index(P<0.05 or P<0.01), and significant alleviation of pathological injury in lung and colon. Moreover, lower serum level of IFN-γ(P<0.05 or P<0.01), protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue(P<0.05 or P<0.01), JAK2 protein level in colon tissue(P<0.01), and protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) were observed in the Maxing Shigan Decoction group than in the model group. After 3 days of administration, the level of serum IL-8 in the model group was significantly higher than that in the normal group(P<0.01), and the level in the Maxing Shigan Decoction group was significantly reduced(P<0.01). In conclusion, Maxing Shigan Decoction can significantly up-regulate body mass, spleen index, and thymus index, down-regulate lung index, reduce the levels of IL-8 and IFN-γ, and down-regulate protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue and protein and mRNA levels of JAK2, STAT1, and IRF9 in colon tissue, and alleviate pathological damage of lung tissue and colon tissue. The mechanism is the likelihood that it inhibits the activation of JAK1/2-STAT1 signaling pathway to alleviate the damage to lung and colon tissue damage.
Mice
;
Animals
;
Humans
;
Janus Kinase 1/genetics*
;
STAT1 Transcription Factor/genetics*
;
Influenza, Human
;
Interleukin-8
;
Signal Transduction
;
Orthomyxoviridae Infections
;
Interferon-gamma
;
Lung
;
RNA, Messenger
;
Orthomyxoviridae
;
Colon
7.Immunogenicity and safety of a recombinant fusion protein vaccine (V-01) against coronavirus disease 2019 in healthy adults: a randomized, double-blind, placebo-controlled, phase II trial.
Ya-Jun SHU ; Jian-Feng HE ; Rong-Juan PEI ; Peng HE ; Zhu-Hang HUANG ; Shao-Min CHEN ; Zhi-Qiang OU ; Jing-Long DENG ; Pei-Yu ZENG ; Jian ZHOU ; Yuan-Qin MIN ; Fei DENG ; Hua PENG ; Zheng ZHANG ; Bo WANG ; Zhong-Hui XU ; Wu-Xiang GUAN ; Zhong-Yu HU ; Ji-Kai ZHANG
Chinese Medical Journal 2021;134(16):1967-1976
BACKGROUND:
Innovative coronavirus disease 2019 (COVID-19) vaccines, with elevated global manufacturing capacity, enhanced safety and efficacy, simplified dosing regimens, and distribution that is less cold chain-dependent, are still global imperatives for tackling the ongoing pandemic. A previous phase I trial indicated that the recombinant COVID-19 vaccine (V-01), which contains a fusion protein (IFN-PADRE-RBD-Fc dimer) as its antigen, is safe and well tolerated, capable of inducing rapid and robust immune responses, and warranted further testing in additional clinical trials. Herein, we aimed to assess the immunogenicity and safety of V-01, providing rationales of appropriate dose regimen for further efficacy study.
METHODS:
A randomized, double-blind, placebo-controlled phase II clinical trial was initiated at the Gaozhou Municipal Centre for Disease Control and Prevention (Guangdong, China) in March 2021. Both younger (n = 440; 18-59 years of age) and older (n = 440; ≥60 years of age) adult participants in this trial were sequentially recruited into two distinct groups: two-dose regimen group in which participants were randomized either to follow a 10 or 25 μg of V-01 or placebo given intramuscularly 21 days apart (allocation ratio, 3:3:1, n = 120, 120, 40 for each regimen, respectively), or one-dose regimen groups in which participants were randomized either to receive a single injection of 50 μg of V-01 or placebo (allocation ratio, 3:1, n = 120, 40, respectively). The primary immunogenicity endpoints were the geometric mean titers of neutralizing antibodies against live severe acute respiratory syndrome coronavirus 2, and specific binding antibodies to the receptor binding domain (RBD). The primary safety endpoint evaluation was the frequencies and percentages of overall adverse events (AEs) within 30 days after full immunization.
RESULTS:
V-01 provoked substantial immune responses in the two-dose group, achieving encouragingly high titers of neutralizing antibody and anti-RBD immunoglobulin, which peaked at day 35 (161.9 [95% confidence interval [CI]: 133.3-196.7] and 149.3 [95%CI: 123.9-179.9] in 10 and 25 μg V-01 group of younger adults, respectively; 111.6 [95%CI: 89.6-139.1] and 111.1 [95%CI: 89.2-138.4] in 10 and 25 μg V-01 group of older adults, respectively), and remained high at day 49 after a day-21 second dose; these levels significantly exceed those in convalescent serum from symptomatic COVID-19 patients (53.6, 95%CI: 31.3-91.7). Our preliminary data show that V-01 is safe and well tolerated, with reactogenicity predominantly being absent or mild in severity and only one vaccine-related grade 3 or worse AE being observed within 30 days. The older adult participants demonstrated a more favorable safety profile compared with those in the younger adult group: with AEs percentages of 19.2%, 25.8%, 17.5% in older adults vs. 34.2%, 23.3%, 26.7% in younger adults at the 10, 25 μg V-01 two-dose group, and 50 μg V-01 one-dose group, respectively.
CONCLUSIONS:
The vaccine candidate V-01 appears to be safe and immunogenic. The preliminary findings support the advancement of the two-dose, 10 μg V-01 regimen to a phase III trial for a large-scale population-based evaluation of safety and efficacy.
TRIAL REGISTRATION
http://www.chictr.org.cn/index.aspx (No. ChiCTR2100045107, http://www.chictr.org.cn/showproj.aspx?proj=124702).
Aged
;
Antibodies, Viral
;
COVID-19/therapy*
;
COVID-19 Vaccines
;
Double-Blind Method
;
Humans
;
Immunization, Passive
;
Recombinant Fusion Proteins
;
SARS-CoV-2
8.The Predict Significance of ALDH Activity to the Relapse of t(8;21) Acute Myeloid Leukemia Patients at Complete Remission.
Lu YANG ; Feng-Ting DAO ; Ya-Zhe WANG ; Yan-Rong LIU ; Hao JIANG ; Qian JIANG ; Kai-Yan LIU ; Ya-Zhen QIN
Journal of Experimental Hematology 2021;29(1):43-48
OBJECTIVE:
To investigate the predict significance of the high aldehyde dehydrogenase activity (ALDH
METHODS:
Bone marrow samples of 23 t(8;21) AML patients diagnosis and achieved complete remission in our hospital from April 2015 to June 2016 were collected, then flow cytometry method was used to detect the activity of ALDH, relationship between it and relapse was analyzed.
RESULTS:
All the patients were followed up for a median of 32 (2-52) months. The median percentage of CD34
CONCLUSION
The percentage of CD34
ADP-ribosyl Cyclase 1
;
Antigens, CD34
;
Flow Cytometry
;
Humans
;
Leukemia, Myeloid, Acute
;
Neoplastic Stem Cells
;
Prognosis
;
Recurrence
;
Remission Induction
9.Effect of low-frequency pulsed electromagnetic fields on activity of rat calvarial osteoblasts through IGF-1R/NO signaling pathway.
Jiale SHAO ; Zhizhong LI ; Jian ZHOU ; Kai LI ; Rong QIN ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2019;48(2):158-164
OBJECTIVE:
To investigate the effect of low-frequency pulsed electromagnetic fields (PEMF) on the maturation and mineralization of rat cranial osteoblasts and its relation to IGF-1R/NO signaling pathway.
METHODS:
The rat osteoblasts were isolated and cultured and randomly divided into blank control group, PEMF group, GSK group (IGF-1R blocker) and PEMF+GSK group. The cells were treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. After 3 d of PEMF treatment, the expressions of protein kinase (AKT), inducible nitric oxide synthase (iNOS) and cGMP-dependent protein kinase (PKG) were detected by Western blotting; on 6 d of PEMF treatment alkaline phosphatase (ALP) activity was determined; on 12 d of PEMF treatment the calcification nodule formation was demonstrated by Alizarin red staining.
RESULTS:
NO level was significantly increased in rat osteoblasts treated with 50 Hz 0.6 mT PEMF for 1.5 h/d. Western blot analysis showed that the expressions of AKT, iNOS and PKG protein in PEMF group were higher than those in the control group (all <0.01); the ALP activity was increased(<0.05), and the PEMF group had the largest area of Alizarin red staining (<0.01). The expressions of AKT, iNOS and PKG protein in GSK group were lower than those in the control group; the ALP activity was decreased (<0.05), and the GSK group had the least area of Alizarin red staining (<0.01). The expressions of AKT, iNOS, PKG protein, the ALP activity and the area of Alizarin red staining in PEMF+GSK group were between PEMF group and GSK group.
CONCLUSIONS
PEMF may enhance the maturation and mineralization of rat cranial osteoblasts through IGF-1R/NO signaling pathway.
Animals
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Electromagnetic Fields
;
Nitric Oxide
;
metabolism
;
Osteoblasts
;
radiation effects
;
Rats
;
Receptor, IGF Type 1
;
metabolism
;
Signal Transduction
;
radiation effects
10.Preventive effect and mechanism of puerarin on rat models of disuse osteoporosis.
Kai LI ; Rong QIN ; Jia-le SHAO ; Yu-Hai GAO ; Jian ZHOU ; Ke-Ming CHEN
China Journal of Chinese Materia Medica 2019;44(3):535-540
To investigate the preventive effect and possible mechanism of puerarin(Pur) in rat model of disuse osteoporosis(DOP),thirty healthy Wistar female rats of 2 months old were randomly divided into control group(Control), hindlimb suspension group(HLS), and puerarin group(HLS+Pur) in hindlimb suspension, with 10 rats in each group. A disuse osteoporosis model was established by tail suspension method, and 15.4 mg·kg~(-1) puerarin suspension was administered to HLS+Pur group every day, and the same volume of distilled water was administered to Control group and HLS group respectively. After 28 days, the rats were sacrificed by abdominal aorta blood collection, the main organs of the rats were removed, and the bone tissues of the rats were dissected. The organ index of the rats was calculated and the histopathology of the organs was observed under microscope. Bone mineral density test and bone biomechanical experiment were performed. Bone histomorphometry results were observed after bone tissue sectioning, and serum biochemical markers of bone metabolism were determined. There was no significant difference in organ index between the groups. There was no obvious abnormality in the pathological examination of the organs. The results of bone mineral density showed that puerarin could significantly increase the bone density of the tibia and vertebrae caused by hindlimb suspension. The mechanical parameters experiments showed that puerarin could effectively increase the maximum load and elastic modulus of the tibia and vertebrae. Fluorescence labeling showed that the fluorosis interval increased and the bone formation increased during puerarin treatment. The VG staining results showed that compared with the HLS group, in the puerarin group, the number of trabecular bone increased, the thickness of the trabecular bone became thicker, and the bone separation became smaller, which greatly improved the bone microstructure after hindlinb suspension. In addition, serum biochemical indicators showed that puerarin could promote bone formation index bone calcium. The content of osteocalcin(OC) increased and inhibited the formation of tartrate-resistant acid phosphatase 5 b(TRACP 5 b). Puerarin has a preventive effect in the rat model of disuse osteoporosis and its effect is good, and its mechanism may be related to promoting bone formation and inhibiting bone resorption.
Animals
;
Bone Density
;
Female
;
Isoflavones
;
pharmacology
;
Osteocalcin
;
metabolism
;
Osteoporosis
;
drug therapy
;
Rats
;
Rats, Wistar
;
Tartrate-Resistant Acid Phosphatase
;
metabolism

Result Analysis
Print
Save
E-mail