2.Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate.
Jyun-Yi WU ; Chia-Hsin CHEN ; Li-Yin YEH ; Ming-Long YEH ; Chun-Chan TING ; Yan-Hsiung WANG
International Journal of Oral Science 2013;5(2):85-91
Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cells were irradiated (660 nm) daily with doses of 0, 1, 2 or 4 J⋅cm(-2). Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J⋅cm(-2) significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J⋅cm(-2) showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.
Adenine
;
analogs & derivatives
;
pharmacology
;
Adenylyl Cyclase Inhibitors
;
Alkaline Phosphatase
;
analysis
;
genetics
;
radiation effects
;
Anthraquinones
;
Bone Morphogenetic Protein 2
;
genetics
;
Calcium
;
metabolism
;
radiation effects
;
Cell Culture Techniques
;
Cell Differentiation
;
radiation effects
;
Cell Line
;
Cell Proliferation
;
radiation effects
;
Coloring Agents
;
Core Binding Factor Alpha 1 Subunit
;
genetics
;
Cyclic AMP
;
antagonists & inhibitors
;
radiation effects
;
Gene Expression
;
radiation effects
;
Humans
;
L-Lactate Dehydrogenase
;
analysis
;
Lasers, Semiconductor
;
Low-Level Light Therapy
;
instrumentation
;
Osteocalcin
;
genetics
;
Osteogenesis
;
genetics
;
radiation effects
;
Periodontal Ligament
;
cytology
;
radiation effects
;
Radiation Dosage
;
Real-Time Polymerase Chain Reaction
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tetrazolium Salts
;
Thiazoles
3.Upregulation of FcγRIIB by resveratrol via NF-κB activation reduces B-cell numbers and ameliorates lupus.
Jyun Pei JHOU ; Se Jie CHEN ; Ho Yin HUANG ; Wan Wan LIN ; Duen Yi HUANG ; Shiang Jong TZENG
Experimental & Molecular Medicine 2017;49(9):e381-
Resveratrol, an anti-inflammatory agent, can inhibit pro-inflammatory mediators by activating Sirt1, which is a class III histone deacetylase. However, whether resveratrol can regulate inhibitory or anti-inflammatory molecules has been less studied. FcγRIIB, a receptor for IgG, is an essential inhibitory receptor of B cells for blocking B-cell receptor-mediated activation and for directly inducing apoptosis of B cells. Because mice deficient in either Sirt1 or FcγRIIB develop lupus-like diseases, we investigated whether resveratrol can alleviate lupus through FcγRIIB. We found that resveratrol enhanced the expression of FcγRIIB in B cells, resulting in a marked depletion of plasma cells in the spleen and notably in the bone marrow, thereby decreasing serum autoantibody titers in MRL/lpr mice. The upregulation of FcγRIIB by resveratrol involved an increase of Sirt1 protein and deacetylation of p65 NF-κB (K310). Moreover, increased binding of phosphor-p65 NF-κB (S536) but decreased association of acetylated p65 NF-κB (K310) and phosphor-p65 NF-κB (S468) to the −480 promoter region of Fcgr2b gene was responsible for the resveratrol-mediated enhancement of FcγRIIB gene transcription. Consequently, B cells, especially plasma cells, were considerably reduced in MRL/lpr mice, leading to improvement of nephritis and prolonged survival. Taken together, we provide evidence that pharmacological upregulation of FcγRIIB expression in B cells via resveratrol can selectively reduce B cells, decrease serum autoantibodies and ameliorate lupus nephritis. Our findings lead us to propose FcγRIIB as a new target for therapeutic exploitation, particularly for lupus patients whose FcγRIIB expression levels in B cells are downregulated.
Animals
;
Apoptosis
;
Autoantibodies
;
B-Lymphocytes*
;
Bone Marrow
;
Histone Deacetylases
;
Humans
;
Immunoglobulin G
;
Lupus Nephritis
;
Mice
;
Nephritis
;
Plasma Cells
;
Promoter Regions, Genetic
;
Spleen
;
Up-Regulation*