1.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
2.Quality evaluation of Xintong granules based on HPLC fingerprint and quantitative analysis of multi-components by single-marker method
Xide YE ; Xiaolong FENG ; Mingguo SHAO ; Linchun WAN ; Zhenyu HU ; Chunyu CHEN ; Yu WU ; Junwen BU ; Yuhang QIAN ; Fanqiang MENG
China Pharmacy 2025;36(15):1866-1870
OBJECTIVE To establish the HPLC fingerprint of Xintong granules and the quantitative analysis of multi- components by single-marker method (QAMS) to determine the contents of 7 components, so as to provide a scientific basis for their quality control. METHODS HPLC method was used to establish the fingerprints for 10 batches of Xintong granules (No. S1- S10), and similarity evaluation, cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) were performed. At the same time, the contents of seven components, including puerarin, daidzin, calycosin-7-O- β -D-glucoside, stilbene glycoside, naringin, icariin and tanshinone ⅡA, were determined by QAMS method, and were compared with the results of external standard method. RESULTS A total of 18 common peaks were marked and 7 peaks were identified in the HPLC fingerprints for 10 batches of Xintong granules, namely puerarin (peak 4), daidzin (peak 7), calycosin-7-O-β-D-glucoside (peak 9), stilbene glycoside (peak 10), naringin (peak 12), icariin (peak 17), and tanshinone ⅡA (peak 18); the similarities among them were more than 0.990, and CA and PLS-DA results showed that S4-S5,S8-S10,S1-S3 and S6-S7 were clustered into three categories, respectively. Using naringin as the internal standard, the contents of puerarin, daidzin, calycosin-7-O-β-D-glucoside, stilbene glycoside, icariin and tanshinone ⅡA were determined to be 7.868 1-10.181 2, 1.709 2-2.374 1, 0.285 2-0.326 3, 1.024 1- 1.523 9, 0.140 2-0.290 4, and 0.077 1-0.219 4 mg/g, respectively, by the QAMS. These results showed no significant differences compared to those obtained by the external standard method. CONCLUSIONS Established HPLC fingerprint and QAMS method are convenient, stable and accurate, which can provide a basis for the quality evaluation of Xintong granules.