1.Results of carrier screening for Spinal muscular atrophy among 35 145 reproductive-aged individuals from Dongguan region.
Ying ZHAO ; Jiwu LOU ; Youqing FU ; Yunshi DAI ; Qiaoyi LIANG ; Manna SUN ; Junru TAN ; Yanhui LIU
Chinese Journal of Medical Genetics 2023;40(6):655-660
OBJECTIVE:
To carry out carrier screening for Spinal muscular atrophy (SMA) in reproductive-aged individuals from Dongguan region and determine the carrier frequency of SMN1 gene mutations.
METHODS:
Reproductive-aged individuals who underwent SMN1 genetic screening at the Dongguan Maternal and Child Health Care Hospital from March 2020 to August 2022 were selected as the study subjects. Deletions of exon 7 and 8 (E7/E8) of the SMN1 gene were detected by real-time fluorescence quantitative PCR (qPCR), and prenatal diagnosis was provided for carrier couples by multiple ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 35 145 subjects, 635 were found to be carriers of SMN1 E7 deletion (586 with heterozygous E7/E8 deletion, 2 with heterozygous E7 deletion and homozygous E8 deletion, and 47 with sole heterozygous E7 deletion). The carrier frequency was 1.81% (635/35 145), with 1.59% (29/1 821) in males and 1.82% (606/33 324) in females. There was no significant difference between the two genders (χ² = 0.497, P = 0.481). A 29-year-old woman was found to harbor homozygous deletion of SMN1 E7/E8, and was verified to have a SMN1∶SMN2 ratio of [0∶4], none of her three family members with a [0∶4] genotype had clinical symptoms. Eleven carrier couples had accepted prenatal diagnosis, and one fetus was found to have a [0∶4] genotype, and the pregnancy was terminated.
CONCLUSION
This study has determined the SMA carrier frequency in Dongguan region for the first time and provided prenatal diagnosis for carrier couples. The data can provide a reference for genetic counseling and prenatal diagnosis, which has important clinical implications for the prevention and control of birth defects associated with SMA.
Humans
;
Child
;
Pregnancy
;
Male
;
Female
;
Adult
;
Homozygote
;
Sequence Deletion
;
Prenatal Diagnosis
;
Genetic Testing
;
Muscular Atrophy, Spinal/genetics*
;
Survival of Motor Neuron 1 Protein/genetics*
;
Genetic Carrier Screening