1.Research progress in clinical practice of discharge preparation services
Yating YU ; Feng XIAO ; Junru CHEN ; Renlian JIANG
Chinese Journal of Practical Nursing 2018;34(2):139-143
The discharge preparation service is a complete process, which is of great significance for ensuring the patients′ discharge safety and the home sustainability of rehabilitation nursing. It has become a hot issue among international nursing scholars. This paper reviews the concept, implementation content, assessment tools, nursing practice of patient discharge preparation services, so as to provide theoretical basis for forming patient discharge preparation services system with medical environment in China.
2.Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer.
Junru FENG ; Hui LU ; Wenhao MA ; Wenjing TIAN ; Zhuan LU ; Hongying YANG ; Yongping CAI ; Pengfei CAI ; Yuchen SUN ; Zilong ZHOU ; Jiaqian FENG ; Jiazhong DENG ; Ying SHU ; Kun QU ; Weidong JIA ; Ping GAO ; Huafeng ZHANG
Protein & Cell 2022;13(11):825-841
Metformin is currently a strong candidate anti-tumor agent in multiple cancers. However, its anti-tumor effectiveness varies among different cancers or subpopulations, potentially due to tumor heterogeneity. It thus remains unclear which hepatocellular carcinoma (HCC) patient subpopulation(s) can benefit from metformin treatment. Here, through a genome-wide CRISPR-Cas9-based knockout screen, we find that DOCK1 levels determine the anti-tumor effects of metformin and that DOCK1 is a synthetic lethal target of metformin in HCC. Mechanistically, metformin promotes DOCK1 phosphorylation, which activates RAC1 to facilitate cell survival, leading to metformin resistance. The DOCK1-selective inhibitor, TBOPP, potentiates anti-tumor activity by metformin in vitro in liver cancer cell lines and patient-derived HCC organoids, and in vivo in xenografted liver cancer cells and immunocompetent mouse liver cancer models. Notably, metformin improves overall survival of HCC patients with low DOCK1 levels but not among patients with high DOCK1 expression. This study shows that metformin effectiveness depends on DOCK1 levels and that combining metformin with DOCK1 inhibition may provide a promising personalized therapeutic strategy for metformin-resistant HCC patients.
Animals
;
Antineoplastic Agents/therapeutic use*
;
Carcinoma, Hepatocellular/metabolism*
;
Cell Line, Tumor
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Genome
;
Humans
;
Liver Neoplasms/metabolism*
;
Metformin/therapeutic use*
;
Mice
;
Phosphorylation
;
Synthetic Lethal Mutations
;
Transcription Factors/metabolism*
;
rac GTP-Binding Proteins/metabolism*