1.Effect of thrombopoietin on platelet activation in vitro
Xin DU ; Mingchun WANG ; Ming LI ; Junmei WAN
Chinese Journal of Pathophysiology 1989;0(05):-
AIM:To study the effects of thrombopoietin (TPO) and other hematopoietic cytokines on platelet activation. METHODS: Using fluorescent-labeled monoclonal antibodies and flow cytometry.RESULTS: The per- centage range of platelets activated by 120 ng/mL TPO was 8. 89% -39. 92%,mean value was 17.43%; However, there were no effects of TPO 40 ng/mL and GM - CSF 100 ng/mL and IL- 3 100 ng/mL on platelet activation. CONCLUSION: Higher concentration of TPO directly stimulated platelet activation.
2.Evaluation of the safety and efficacy of mitomycin C-perfluorooctyl bromide liposome nanoparticles in the treatment of human pterygium fibroblasts
Tao LI ; Lingshan LIAO ; Shenglan ZHU ; Juan TANG ; Xiaoli WU ; Qilin FANG ; Ying LI ; Biao LI ; Qin TIAN ; Junmei WAN ; Yi YANG ; Yueyue TAN ; Jiaqian LI ; Juan DU ; Yan ZHOU ; Dan ZHANG ; Xingde LIU
Recent Advances in Ophthalmology 2024;44(2):100-105
Objective To prepare a nano drug(PFOB@Lip-MMC)with liposome as the carrier,liquid perfluorooc-tyl bromide(PFOB)as core and mitomycin C(MMC)loading on the liposome shell and study its inhibitory effect on the proliferation of human pterygium fibroblasts(HPFs).Methods The thin film dispersion-hydration ultrasonic method was used to prepare PFOB@Lip-MMC and detect its physical and chemical properties.Cell Counting Kit-8,Cam-PI cell viability staining and flow cytometry were employed to detect the impact of different concentrations of PFOB@Lip-MMC on the via-bility of HPFs.DiI fluorescence labeled PFOB@Lip-MMC was used to observe the permeability of the nano drug to HPFs under a laser confocal microscope.After establishing HPF inflammatory cell models,they were divided into the control group(with sterile phosphate-buffered saline solution added),PFOB@Lip group(with PFOB@Lip added),MMC group(with MMC added),PFOB@Lip-MMC group(with PFOB@Lip-MMC added)and normal group(with fresh culture medi-um added)according to the experimental requirements.After co-incubation for 24 h,flow cytometer was used to detect the apoptosis rate of inflammatory cells,and the gene expression levels of interleukin(IL)-1β,prostaglandin E2(PGE2),tumor necrosis factor(TNF)-α and vascular endothelial growth factor(VEGF)in cells were analyzed by PCR.Results The average particle size and Zeta potential of PFOB@Lip-MMC were(103.45±2.17)nm and(27.34±1.03)mV,respec-tively,and its entrapped efficiency and drug loading rate were(72.85±3.28)%and(34.27±2.04)%,respectively.The sustained-release MMC of drug-loaded nanospheres reached(78.34±2.92)%in vitro in a 24-hour ocular surface environ-ment.The biological safety of PFOB@Lip-MMC significantly improved compared to MMC.In terms of the DiI fluorescence labeled PFOB@Lip-MMC,after co-incubation with inflammatory HPFs for 2 h,DiI fluorescence labeling was diffusely dis-tributed in the cytoplasm of inflammatory HPFs.The apoptosis rate of inflammatory HPFs in the PFOB@Lip-MMC group[(77.23±4.93)%]was significantly higher than that in the MMC group[(51.62±3.28)%].The PCR examination results showed that the gene transcription levels of IL-1 β,PGE2,TNF-α and VEGF in other groups were significantly reduced com-pared to the control group and PFOB@Lip group,with the most significant decrease in the PFOB@Lip-MMC group(all P<0.05).Conclusion In this study,a novel nano drug(PFOB@LIP-MMC)that inhibited the proliferation of HPFs was successfully synthesized,and its cytotoxicity was significantly reduced compared to the original drugs.It has good bio-compatibility and anti-inflammatory effects,providing a new treatment approach for reducing the recurrence rate after pte-rygium surgery.