1.Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth.
Dong Ho BAK ; Mi Ji CHOI ; Soon Re KIM ; Byung Chul LEE ; Jae Min KIM ; Eun Su JEON ; Wonil OH ; Ee Seok LIM ; Byung Cheol PARK ; Moo Joong KIM ; Jungtae NA ; Beom Joon KIM
The Korean Journal of Physiology and Pharmacology 2018;22(5):555-566
Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and β-catenin; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.
Alkaline Phosphatase
;
Alopecia
;
Cell Survival
;
Coculture Techniques
;
Fetal Blood*
;
Hair Follicle
;
Hair*
;
Humans*
;
In Vitro Techniques
;
Insulin-Like Growth Factor Binding Protein 1
;
Insulin-Like Growth Factor I
;
Intercellular Signaling Peptides and Proteins*
;
Mesenchymal Stromal Cells
;
Regeneration
;
Stem Cells*
;
Umbilical Cord*
;
Vascular Endothelial Growth Factor A