1.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
2.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
3.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
4.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
5.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
6.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
7.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
8.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
9.Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells
Seo-Hee KIM ; Seung Hee SHIN ; Seok-Man KIM ; Sang-Eun JUNG ; Beom-Jin SHIN ; Jin Seop AHN ; Kyoung Taek LIM ; Dong-Hwan KIM ; Kichoon LEE ; Buom-Yong RYU
The World Journal of Men's Health 2025;43(1):154-165
Purpose:
In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models.
Materials and Methods:
SSCs enriched from 6- to 8-day-old C57BL/6-eGFP+ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis.
Results:
BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis.
Conclusions
Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
10.Clinical Trial Protocol for Porcine Islet Xenotransplantation in South Korea
Byung-Joon KIM ; Jun-Seop SHIN ; Byoung-Hoon MIN ; Jong-Min KIM ; Chung-Gyu PARK ; Hee-Jung KANG ; Eung Soo HWANG ; Won-Woo LEE ; Jung-Sik KIM ; Hyun Je KIM ; Iov KWON ; Jae Sung KIM ; Geun Soo KIM ; Joonho MOON ; Du Yeon SHIN ; Bumrae CHO ; Heung-Mo YANG ; Sung Joo KIM ; Kwang-Won KIM
Diabetes & Metabolism Journal 2024;48(6):1160-1168
Background:
Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans.
Methods:
A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness.
Conclusion
A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.

Result Analysis
Print
Save
E-mail