1.The Comparative Study of Alveolar Bone Level and Root Form of the Mandibular Molar on Radiographic Image and Clinical Examination.
Jung Bae PARK ; Chin Hyung CHUNG
The Journal of the Korean Academy of Periodontology 2004;34(2):281-292
Periodontal defects of the furcation are characterized by several inherent anatomic factors that can make successful periodontal therapy difficult and results unpredictable. The severity and rate of occurrence of periodontal disease are directly related to the location of the furcation relative to the cemento-enamel junction and anatomical form of the root by limiting the accessibility and effectiveness of the periodontal instrumentation. This study investigated the reliability and accuracy of panoramic radiograph diagnoses of the periodontal state of mandibular molars, particularly regarding the diagnosis of furcation area periodontal defects, treatment planning, and prognosis prediction. This study examined a total of 110 teeth belonging to 33 subjects (19 male, 14 female) presenting with incipient to moderate periodontitis 4-7mm pocket depth. The alveolar bone level, length and width of the root trunk, and root separation angle were measured using the panoramic radiograph and compared to the results taken directly by retracting a full-thickness flap. The results of the study are as follows: 1. Data regarding the alveolar bone level of the mandibular first molar showed that the directly taken surgical measurements resulted in 5.1+/-0.9mm that was slightly deeper than the corresponding panoramic measurement resulted in 4.8+/-0.8mm, but these differences were statistically insignificant (p>0.05). 2. The data of the directly taken surgical measurement of the mandibular second molar (5.1+/-1.1mm) was slightly deeper than the corresponding panoramic measurement (4.7+/-1.2mm), but these differences were statistically insignificant (p>0.05). 3. The measured values of the length and width of the mandibular first molar root trunks were determined to be 4.1+/-0.6mm and 7.3+/-0.9mm, respectively, while the values of the mandibular second molar root trunks were determined to be 4.6+/-1.3mm and 7.6+/-0.9mm respectively. The differences between these values were found to be statistically significant (p<0.01). 4. The measured values of the root separation angle showed that the mandibular first molars averaged 34.5+/-4.4degrees, while the mandibular second molars averaged 23.0+/-10.0degrees. The differences between these values were found to be statistically significant (p<0.01). The results of the study show that when directly taken surgical measurements of periodontal defect depth are compared to depths indirectly measured using standard panoramic radiograph, the values are slightly deeper, but that these values are statistically insignificant. These results imply that panoramic radiograph is a reliable and effective means of making clinical diagnosis of incipient to moderate periodontitis.
Diagnosis
;
Humans
;
Male
;
Molar*
;
Periodontal Diseases
;
Periodontitis
;
Prognosis
;
Tooth
2.Prognosis after treatment with multiple dental implants under general anesthesia and sedation in a cerebral palsy patient with mental retardation: A case report.
Young Joon HONG ; Jung Bae DAN ; Myung Jin KIM ; Hyun Jeong KIM ; Kwang Suk SEO
Journal of Dental Anesthesia and Pain Medicine 2017;17(2):149-155
Cerebral palsy is a non-progressive disorder resulting from central nervous system damage caused by multiple factors. Almost all cerebral palsy patients have a movement disorder that makes dental treatment difficult. Oral hygiene management is difficult and the risks for periodontitis, dental caries and loss of multiple teeth are high. Placement of dental implants for multiple missing teeth in cerebral palsy patients needs multiple rounds of general anesthesia, and the prognosis is poor despite the expense. Therefore, making the decision to perform multiple dental implant treatments on cerebral palsy patients is difficult. A 33-year-old female patient with cerebral palsy and mental retardation was scheduled for multiple implant treatments. She underwent computed tomography (CT) under sedation and the operation of nine dental implants under general anesthesia. Implant-supported fixed prosthesis treatment was completed. During follow-up, she had the anterior incisors extracted and underwent the surgery of 3 additional dental implants, completing the prosthetic treatment. Although oral parafunctions existed due to cerebral palsy, no implant failure was observed 9 years after the first implant surgery.
Adult
;
Anesthesia, General*
;
Central Nervous System
;
Cerebral Palsy*
;
Dental Caries
;
Dental Implants*
;
Disabled Persons
;
Female
;
Follow-Up Studies
;
Humans
;
Incisor
;
Intellectual Disability*
;
Movement Disorders
;
Oral Hygiene
;
Periodontitis
;
Prognosis*
;
Prostheses and Implants
;
Tooth
3.Impact of User’s Background Knowledge and Polyp Characteristics in Colonoscopy with Computer-Aided Detection
Jooyoung LEE ; Woo Sang CHO ; Byeong Soo KIM ; Dan YOON ; Jung KIM ; Ji Hyun SONG ; Sun Young YANG ; Seon Hee LIM ; Goh Eun CHUNG ; Ji Min CHOI ; Yoo Min HAN ; Hyoun-Joong KONG ; Jung Chan LEE ; Sungwan KIM ; Jung Ho BAE
Gut and Liver 2024;18(5):857-866
Background/Aims:
We investigated how interactions between humans and computer-aided detection (CADe) systems are influenced by the user’s experience and polyp characteristics.
Methods:
We developed a CADe system using YOLOv4, trained on 16,996 polyp images from 1,914 patients and 1,800 synthesized sessile serrated lesion (SSL) images. The performance of polyp detection with CADe assistance was evaluated using a computerized test module. Eighteen participants were grouped by colonoscopy experience (nurses, fellows, and experts). The value added by CADe based on the histopathology and detection difficulty of polyps were analyzed.
Results:
The area under the curve for CADe was 0.87 (95% confidence interval [CI], 0.83 to 0.91). CADe assistance increased overall polyp detection accuracy from 69.7% to 77.7% (odds ratio [OR], 1.88; 95% CI, 1.69 to 2.09). However, accuracy decreased when CADe inaccurately detected a polyp (OR, 0.72; 95% CI, 0.58 to 0.87). The impact of CADe assistance was most and least prominent in the nurses (OR, 1.97; 95% CI, 1.71 to 2.27) and the experts (OR, 1.42; 95% CI, 1.15 to 1.74), respectively. Participants demonstrated better sensitivity with CADe assistance, achieving 81.7% for adenomas and 92.4% for easy-to-detect polyps, surpassing the standalone CADe performance of 79.7% and 89.8%, respectively. For SSLs and difficult-to-detect polyps, participants' sensitivities with CADe assistance (66.5% and 71.5%, respectively) were below those of standalone CADe (81.1% and 74.4%). Compared to the other two groups (56.1% and 61.7%), the expert group showed sensitivity closest to that of standalone CADe in detecting SSLs (79.7% vs 81.1%, respectively).
Conclusions
CADe assistance boosts polyp detection significantly, but its effectiveness depends on the user’s experience, particularly for challenging lesions.
4.Impact of User’s Background Knowledge and Polyp Characteristics in Colonoscopy with Computer-Aided Detection
Jooyoung LEE ; Woo Sang CHO ; Byeong Soo KIM ; Dan YOON ; Jung KIM ; Ji Hyun SONG ; Sun Young YANG ; Seon Hee LIM ; Goh Eun CHUNG ; Ji Min CHOI ; Yoo Min HAN ; Hyoun-Joong KONG ; Jung Chan LEE ; Sungwan KIM ; Jung Ho BAE
Gut and Liver 2024;18(5):857-866
Background/Aims:
We investigated how interactions between humans and computer-aided detection (CADe) systems are influenced by the user’s experience and polyp characteristics.
Methods:
We developed a CADe system using YOLOv4, trained on 16,996 polyp images from 1,914 patients and 1,800 synthesized sessile serrated lesion (SSL) images. The performance of polyp detection with CADe assistance was evaluated using a computerized test module. Eighteen participants were grouped by colonoscopy experience (nurses, fellows, and experts). The value added by CADe based on the histopathology and detection difficulty of polyps were analyzed.
Results:
The area under the curve for CADe was 0.87 (95% confidence interval [CI], 0.83 to 0.91). CADe assistance increased overall polyp detection accuracy from 69.7% to 77.7% (odds ratio [OR], 1.88; 95% CI, 1.69 to 2.09). However, accuracy decreased when CADe inaccurately detected a polyp (OR, 0.72; 95% CI, 0.58 to 0.87). The impact of CADe assistance was most and least prominent in the nurses (OR, 1.97; 95% CI, 1.71 to 2.27) and the experts (OR, 1.42; 95% CI, 1.15 to 1.74), respectively. Participants demonstrated better sensitivity with CADe assistance, achieving 81.7% for adenomas and 92.4% for easy-to-detect polyps, surpassing the standalone CADe performance of 79.7% and 89.8%, respectively. For SSLs and difficult-to-detect polyps, participants' sensitivities with CADe assistance (66.5% and 71.5%, respectively) were below those of standalone CADe (81.1% and 74.4%). Compared to the other two groups (56.1% and 61.7%), the expert group showed sensitivity closest to that of standalone CADe in detecting SSLs (79.7% vs 81.1%, respectively).
Conclusions
CADe assistance boosts polyp detection significantly, but its effectiveness depends on the user’s experience, particularly for challenging lesions.
5.Impact of User’s Background Knowledge and Polyp Characteristics in Colonoscopy with Computer-Aided Detection
Jooyoung LEE ; Woo Sang CHO ; Byeong Soo KIM ; Dan YOON ; Jung KIM ; Ji Hyun SONG ; Sun Young YANG ; Seon Hee LIM ; Goh Eun CHUNG ; Ji Min CHOI ; Yoo Min HAN ; Hyoun-Joong KONG ; Jung Chan LEE ; Sungwan KIM ; Jung Ho BAE
Gut and Liver 2024;18(5):857-866
Background/Aims:
We investigated how interactions between humans and computer-aided detection (CADe) systems are influenced by the user’s experience and polyp characteristics.
Methods:
We developed a CADe system using YOLOv4, trained on 16,996 polyp images from 1,914 patients and 1,800 synthesized sessile serrated lesion (SSL) images. The performance of polyp detection with CADe assistance was evaluated using a computerized test module. Eighteen participants were grouped by colonoscopy experience (nurses, fellows, and experts). The value added by CADe based on the histopathology and detection difficulty of polyps were analyzed.
Results:
The area under the curve for CADe was 0.87 (95% confidence interval [CI], 0.83 to 0.91). CADe assistance increased overall polyp detection accuracy from 69.7% to 77.7% (odds ratio [OR], 1.88; 95% CI, 1.69 to 2.09). However, accuracy decreased when CADe inaccurately detected a polyp (OR, 0.72; 95% CI, 0.58 to 0.87). The impact of CADe assistance was most and least prominent in the nurses (OR, 1.97; 95% CI, 1.71 to 2.27) and the experts (OR, 1.42; 95% CI, 1.15 to 1.74), respectively. Participants demonstrated better sensitivity with CADe assistance, achieving 81.7% for adenomas and 92.4% for easy-to-detect polyps, surpassing the standalone CADe performance of 79.7% and 89.8%, respectively. For SSLs and difficult-to-detect polyps, participants' sensitivities with CADe assistance (66.5% and 71.5%, respectively) were below those of standalone CADe (81.1% and 74.4%). Compared to the other two groups (56.1% and 61.7%), the expert group showed sensitivity closest to that of standalone CADe in detecting SSLs (79.7% vs 81.1%, respectively).
Conclusions
CADe assistance boosts polyp detection significantly, but its effectiveness depends on the user’s experience, particularly for challenging lesions.
6.Impact of User’s Background Knowledge and Polyp Characteristics in Colonoscopy with Computer-Aided Detection
Jooyoung LEE ; Woo Sang CHO ; Byeong Soo KIM ; Dan YOON ; Jung KIM ; Ji Hyun SONG ; Sun Young YANG ; Seon Hee LIM ; Goh Eun CHUNG ; Ji Min CHOI ; Yoo Min HAN ; Hyoun-Joong KONG ; Jung Chan LEE ; Sungwan KIM ; Jung Ho BAE
Gut and Liver 2024;18(5):857-866
Background/Aims:
We investigated how interactions between humans and computer-aided detection (CADe) systems are influenced by the user’s experience and polyp characteristics.
Methods:
We developed a CADe system using YOLOv4, trained on 16,996 polyp images from 1,914 patients and 1,800 synthesized sessile serrated lesion (SSL) images. The performance of polyp detection with CADe assistance was evaluated using a computerized test module. Eighteen participants were grouped by colonoscopy experience (nurses, fellows, and experts). The value added by CADe based on the histopathology and detection difficulty of polyps were analyzed.
Results:
The area under the curve for CADe was 0.87 (95% confidence interval [CI], 0.83 to 0.91). CADe assistance increased overall polyp detection accuracy from 69.7% to 77.7% (odds ratio [OR], 1.88; 95% CI, 1.69 to 2.09). However, accuracy decreased when CADe inaccurately detected a polyp (OR, 0.72; 95% CI, 0.58 to 0.87). The impact of CADe assistance was most and least prominent in the nurses (OR, 1.97; 95% CI, 1.71 to 2.27) and the experts (OR, 1.42; 95% CI, 1.15 to 1.74), respectively. Participants demonstrated better sensitivity with CADe assistance, achieving 81.7% for adenomas and 92.4% for easy-to-detect polyps, surpassing the standalone CADe performance of 79.7% and 89.8%, respectively. For SSLs and difficult-to-detect polyps, participants' sensitivities with CADe assistance (66.5% and 71.5%, respectively) were below those of standalone CADe (81.1% and 74.4%). Compared to the other two groups (56.1% and 61.7%), the expert group showed sensitivity closest to that of standalone CADe in detecting SSLs (79.7% vs 81.1%, respectively).
Conclusions
CADe assistance boosts polyp detection significantly, but its effectiveness depends on the user’s experience, particularly for challenging lesions.