1.Mechanisms of Glucose Uptake in Cancer Tissue.
Korean Journal of Nuclear Medicine 1999;33(1):1-10
Cancer cells are known to show increased rates of glycolysis metabolism. Based on this, PET studies using F-18-fluorodeoxyglucose have been used for the detection of primary and metastatic tumors. To account for this increased glucose uptake, a variety of mechanisms has been proposed. Glucose influx across the cell membrane is mediated by a family of structurally related proteins known as glucose transporters (Gluts). Among 6 isoforms of Gluts, Glut-1 and/or Glut-3 have been reported to show increased expression in various tumors. Increased level of Glut mRNA transcription is supposed to be the basic mechanism of Glut overexpression at the protein level. Some oncogens such as src or ras intensely stimulate Glut-1 by means of increased Glut-1 mRNA levels. Hexokinase activity is another important factor in glucose uptake in cancer cells. Especially hexokinase type II is considered to be involved in glycolysis of cancer cells. Much of the hexokinase of tumor cells is bound to outer membrane of mitochondria by the porin, a hexokinase receptor. Through this interaction, hexokinase may gain preferred access to ATP synthesized via oxidative phosphorylation in the inner mitochondria compartment. Other biologic factors such as tumor blood flow, blood volume, hypoxia, and infiltrating cells in tumor tissue are involved. Relative hypoxia may activate the anaerobic glycolytic pathway. Surrounding macrophages and newly formed granulation tisssue in tumor showed greater glucose uptake than did viable cancer cells. To expand the application of FDG PET in oncology, it is important for nuclear medicine physicians to understand the related mechanisms of glucose uptake in cancer tissue.
Adenosine Triphosphate
;
Anoxia
;
Biological Factors
;
Blood Volume
;
Carcinogens
;
Cell Membrane
;
Glucose*
;
Glycolysis
;
Hexokinase
;
Humans
;
Macrophages
;
Membranes
;
Metabolism
;
Mitochondria
;
Nuclear Medicine
;
Oxidative Phosphorylation
;
Protein Isoforms
;
RNA, Messenger
2.Applicationof Positron Emission Tomography in Gastrointestimal Carcinomas.
The Korean Journal of Hepatology 1996;2(2):129-133
No abstract available.
Electrons*
;
Positron-Emission Tomography*
3.Management of Recurrent Thyroid Carcinoma with Negative Diagnostic Radioiodine Whole - Body Scan.
Korean Journal of Nuclear Medicine 2001;35(3):117-124
No abstract available.
Thyroid Gland*
;
Thyroid Neoplasms*
4.Clinical Application Positron Emissio Tomogray in Oncloy.
Journal of the Korean Medical Association 2001;44(11):1213-1224
Positron Emission Tomography(PET) is a new imaging modality to make biochemical metabolic images. Because biochemical changes precede anatomical changes in most of diseases including cancer, PET can detect earlier changes of diseases than conventional anatomical imaging modalities. PET can also characterize biochemical property of diseases. A PET center is composed of a medical cyclotron, synthesis system of radiopharmaceuticals and scanner. For PET oncology, several positron-emitting radiopharmaceuticals have been developed. Among them, F-18-fluorodeoxyglucose (FDG) is most frequently used. Higher rate of glucose metabolism has been observed in cancer cells. Like glucose, FDG is transported into the cancer cells and converted to FDG-6-phosphate by hexokinase. FDG-6-phosphate is trapped in the cytoplasm, and emits gamma rays to make PET images. The current application of FDG PET in oncology is in detection, differentiation, and staging of the primary tumors, grading malignancy, monitoring therapeutic response, and early detection of recurrence. Nowadays, PET is an established procedure for staging the diseases and detecting the recurrence in many cancers, especially the lung, colorectal, and head and neck cancers, melanoma, and lymphoma. PET is a regular part of medical insurance reimbursement in many developed countries, and becomes a valuable research tool in oncology as well as an important imaging modality in managing cancer patients.
Cyclotrons
;
Cytoplasm
;
Developed Countries
;
Electrons*
;
Gamma Rays
;
Glucose
;
Head
;
Hexokinase
;
Humans
;
Insurance
;
Lung
;
Lymphoma
;
Melanoma
;
Metabolism
;
Neck
;
Radiopharmaceuticals
;
Recurrence
5.Application of PET in Brain Tumor.
Korean Journal of Nuclear Medicine 2002;36(1):19-27
No abstract available.
Brain Neoplasms*
;
Brain*
6.Application of PET in Brain Tumor.
Korean Journal of Nuclear Medicine 2002;36(1):19-27
No abstract available.
Brain Neoplasms*
;
Brain*
8.Characteristics of 18F fluorodeoxyglucose Uptake in Human Colon Cancer Cells.
Chang Soon KOH ; Myung Chul LEE ; June Key CHUNG ; Jae Min JEONG ; Chae Kyun KIM
Korean Journal of Nuclear Medicine 1997;31(3):381-387
Cancer tissues are characterized by increased glucose uptake. 18F-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter l(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUTI using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with 1micro Ci/ml of FDG in HEPES-buffered saline for one hour. The FDG uptake of SNU-C2A,SNU-C4 and SNU-C5 were 16.8+/-1.36, 12.3+/-5.55 and 61.0+/-2.17cpm/microgram of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were 0.29+/-0.03, 0.21+/-0.09 and 1.07+/-0.07cpm/min/microgram of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of CLUT1 are closely related in human colon cancer cells.
Blotting, Western
;
Colon*
;
Colonic Neoplasms*
;
Diagnosis
;
Glucose
;
Glucose Transport Proteins, Facilitative
;
Humans*
9.Reproducibility of the Assessment of Myocardial Function Using Gated Tc-99m-MIBI SPECT and Quantitative Software.
Myung Chul LEE ; June Key CHUNG ; Dong Soo LEE ; Ji Young AHN ; Gi Jeong CHEON
Korean Journal of Nuclear Medicine 1998;32(5):403-413
PURPOSE: We investigated reproducibility of the quantification of left ventricular volume and ejection fraction, and grading of myocardial wall motion and systolic thickening when we used gated myocardial SPECT and Cedars quantification software. MATERIALS AND METHODS: We performed gated myocardial SPECT in 33 consecutive patients twice in the same position after Tc-99m-MIBI SPECT. We used 16 frames per cycle for the gatingof sequential Tc-99m-MTBI SPECT. After reconstruction, we used Cedars quantitative gated SPECT and calculated ventricular volume and ejection fraction (EF), Wall motion was graded using 5 point score. Wall thickening was graded using 4 point score. Coefficient of variation for re-examination of volume and fraction were calculated. Kappa values (k-value) for assessing reproducibility of wall motion or wall thickening were calculated. RESULTS: Enddiastolic volumes (EDV) ranged from 58 mi to 248 ml (122 ml +/- 42 ml), endsystolic volumes (ESV) from 20 mi to 174 mi (65 ml +1- 39 ml), and EF from 20% to 68% (51% +/- 14%). Geometric mean of standard deviations of 33 patients was 5.0 ml for EDV, 3.9 ml for ESV and 1.9% for EF. Their average differences were not different from zero (p>0.05). k-value for wall motion using 2 consecutive images was 0.76 (confidence interval: 0.71-0.81). k-value was 0.87 (confidence interval:0.83-0.90) for assessment of wall thickening. CONCLUSION: We concluded that quantification of functional indices, assessment of wall motion and wall thickening using gated Tc-99m-MIBI SPECT was reproducible and we could use this method for the evaluation of short-acting drug effect.
Heart
;
Humans
;
Tomography, Emission-Computed, Single-Photon*
10.Current Status and Future Perspective of Nuclear Cardiology.
Nuclear Medicine and Molecular Imaging 2009;43(3):159-164
Coronary artery disease is on the rise over the world. Myocardial perfusion SPECT is a well established technique to detect coronary artery disease and to assess left ventricular function. In addition, it has the unique ability to predict the prognosis of the patients. Moreover, the application of ECG-gated images provided the quantitatve data and improved the accuracy. This approach has been proved to be cost-effective and suitable for the emerging economies as well as developed countries. However, the utilization of nuclear cardiology procedures vary widely considering the different countries and region of the world. Korea exits 2-3 times less utilization than Japan, and 20 times than the United States. Recently, with the emerging of new technology, namely cardiac CT, cardiac MR and stress echocardiography, the clinical usefulness of nuclear cardiology has been called in question and its role has been redefined. For the proper promotion of nuclear cardiology, special educations should be conducted since the nuclear cardiology has the contact points between nuclear medicine and cardiology. Several innovations are in horizon which will impact the diagnostic accuracy as well as imaging time and cost savings. Development of new tracers, gamma camera technology and hybrid systems will open the new avenue in cardiac imaging. The future of nuclear cardiology based on molecular imaging is very exciting. The newly defined biologic targets involving atherosclerosis and vascular vulnerability will allow the answers for the key clinical questions. Hybrid techniques including SPECT/CT indicate the direction in which clinical nuclear cardiology may be headed in the immediate future. To what extent nuclear cardiology will be passively absorbed by other modalities, or will actively incorporate other modalities, is up to the present and next generation of nuclear cardiologists.
Arteries
;
Atherosclerosis
;
Cardiology
;
Chimera
;
Coronary Artery Disease
;
Cost Savings
;
Developed Countries
;
Echocardiography, Stress
;
Education, Special
;
Gamma Cameras
;
Head
;
Humans
;
Japan
;
Korea
;
Molecular Imaging
;
Nuclear Medicine
;
Perfusion
;
Prognosis
;
Tomography, Emission-Computed, Single-Photon
;
Ventricular Function, Left