1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
3.Study on quality evaluation of Mongolian medicine Sanzi powder:fingerprint,chemical pattern recognition and multi-component quantification analysis
Jun LI ; Rongjie LI ; Fengye ZHOU ; Qian ZHANG ; Wei ZHANG ; Bohan ZHANG ; Shu WANG ; Xitong ZHAO ; Jianping CHEN
China Pharmacy 2025;36(4):414-420
OBJECTIVE To establish fingerprint, chemical pattern recognition and multi-component quantification analysis of Sanzi powder, and evaluate its quality. METHODS HPLC method was adopted. The fingerprints of 15 batches of Sanzi powder were established by using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (2012 edition). Cluster analysis, principal component analysis and orthogonal partial least squares-discriminant analysis were also conducted. The variable importance in projection (VIP) value greater than 1 was used as the index to screen the differential markers, and the contents of the differential markers were determined by the same HPLC method. RESULTS A total of 21 common peaks in the HPLC fingerprints of 15 batches of Sanzi powder were calibrated, and the similarities of them were 0.994- 0.999; 6 common peaks were identified, including gallic acid (peak 3), garminoside (peak 10), corilagin (peak 11), chebulinic acid (peak 16), ellagic acid (peak 18), crocin Ⅰ (peak 19). According to the results of cluster analysis, YKD2024LH005,No.YKD2023LH062) principal component analysis and orthogonal partial least squares-discriminant analysis, 15 batches of samples could be clustered into two categories: S1, S5, S7, S9, S14 were clustered into one category; S2-S4, S6, S8, S10-S13, S15 were clustered into one category. VIP values of 11 differential components such as corilagin, chebulinic acid and ellagic acid were higher than 1. Among 15 batches of samples, the contents of corilagin, chebulinic acid and ellagic acid ranged 2.667-5.152, 9.506- 13.522, 0.891-1.811 mg/g. CONCLUSIONS Established HPLC fingerprint and multi-component quantification analysis of Sanzi powder are rapid and simple, and can be used for quality evaluation of Sanzi powder by combining with chemical pattern recognition. Eleven components such as corilagin, chebulinic acid and ellagic acid are differential markers affecting the quality of Sanzi powder.
4.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
5.Study on the mechanism of gossypol acetic acid in the treatment of uterine fibroids based on proteomics
Xin ZHANG ; Abulaiti GULISITAN ; Jing SHEN ; Pei ZHANG ; Zuwen MA ; Jun YAO
China Pharmacy 2025;36(3):318-323
OBJECTIVE To investigate the mechanism of gossypol acetic acid (GAA) in the treatment of uterine fibroids. METHODS Human leiomyoma cells SK-UT-1 were selected as objects to investigate the effects of different concentrations (5, 10, 20, 40, 80, 160 μmol/L) of GAA on the activities of cell proliferation. 4D-DIA proteomic detection and bioinformatics analysis were carried out to screen differential proteins. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis were performed. The expressions of top 3 proteins [N-myc downstream regulated gene 1 (NDRG1), epidermal growth factor receptor feedback inhibitor 1 (ERRFI1), CXC chemokine ligand 3 (CXCL3)] with differential fold changes in SK-UT-1 cells were determined. RESULTS 10-160 μmol/L GAA could significantly reduce the survival rate of SK- UT-1 cells (P<0.05). Proteomics results showed that a total of 921 differentially expressed proteins were obtained, including 254 up-regulated proteins and 667 down-regulated proteins. The differentially expressed proteins were mainly distributed in mitochondria, nucleus, extracellular matrix, etc. Bioinformatics results showed that differentially expressed proteins were mainly involved in signaling pathways such as PI3K/AKT (phosphoinositide 3-kinase/protein kinase B), MAPK (mitogen-activated protein kinase), TNF (tumor necrosis factor), etc., which mainly involved cell apoptosis, aging, and movement. GAA significantly decreased protein expressions of NDRG1 and CXCL3 (P<0.05), but increased protein expression of ERRFI1 (P<0.05). CONCLUSIONS The improvement effect of GAA on uterine fibroids may involve signaling pathways such as PI3K/AKT, MAPK, TNF, etc. It can improve the occurrence and development of uterine fibroids by downregulating the expressions of NDRG1 and CXCL3 proteins, upregulating the expression of ERRFI1 protein, and affecting the proliferation and apoptosis of uterine fibroid cells.
6.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
7.Relationship between self-management behaviors and time perspective among patients with comorbid diabetes
YU Dandan ; ZHANG Yaping ; XU Huilin ; HE Dandan ; LIANG Tongtong ; YANG Jiali ; LI Jun
Journal of Preventive Medicine 2025;37(2):130-134
Objective:
To examine the relationship between self-management behaviors and time perspective among patients with comorbid diabetes, so as to provide the evidence for improving self-management behaviors among patients with comorbid diabetes.
Methods:
The patients with comorbid diabetes who were registered in the chronic disease health management system of Minhang District, Shanghai Municipality in 2021, followed up regularly, and lived in Meilong Town were recruited. Demographic information and family history of diabetes were collected through questionnaire surveys. Time perspective and self-management behaviors were assessed using the Zimbardo Time Perspective Inventory and Diabetes Self-Management Behavior Scale, respectively. The relationship between self-management behaviors and time perspective was analyzed using a multivariable ordinal logistic regression model.
Results:
A total of 907 patients with comorbid diabetes were enrolled, including 472 males (52.04%) and 435 females (47.96%). There were 652 cases aged 65 years and above, accounting for 71.89%. In terms of the types of time perspective, 280 patients were future-oriented (30.87%), 236 were balanced (26.02%), 162 were sensation-seeking (17.86%), 123 were fatalistic (13.56%), and 106 were negative (11.69%). In terms of the self-management behaviors, 46 patients were good (5.07%), 643 were moderate (70.89%), and 218 were poor (24.04%). Multivariable ordinal logistic regression analysis showed that after adjusting for age, gender, educational level, marital status, occupation status, monthly income, and family history of diabetes, the patients with comorbid diabetes who had a future-oriented time perspective had better self-management behaviors (OR=1.874, 95%CI: 1.204-2.915).
Conclusion
The self-management behaviors among patients with comorbid diabetes are moderate to poor, and patients with a future-oriented time perspective can better engage in self-management behaviors.
8.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
9.Analysis of Quality Uniformity of Hengzhi Kechuan Capsules Based on HPLC-DAD-CAD
Qian MA ; An LIU ; Qingxia XU ; Cong GUO ; Jun ZHANG ; Maoqing WANG ; Xiaodi KOU ; Yan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):168-174
ObjectiveTo establish the fingerprints of 15 batches of Hengzhi Kechuan capsules, to quantitatively analyze 10 index components, and to evaluate the quality uniformity of samples from different batches. MethodsThe fingerprints and quantitative analysis of Hengzhi Kechuan capsules were established by a combination method of high performance liquid chromatography coupled with diode array detector and charged aerosol detector(HPLC-DAD-CAD), adenosine, guanosine, vanillic acid, safflomin A, agarotetrol, naringin, hesperidin, militarine, ginsenoside Rb1, and glycyrrhizic acid were selected as quality attribute indexes. A total of 15 batches of Hengzhi Kechuan capsules from 2022 to 2024(3 boxes per batch) were qualitatively and quantitatively analyzed, and the quality uniformity level of the manufacturers was characterized by parameters of intra-batch consistency(PA) and inter-batch consistency(PB). The homogeneity and difference of quality attribute indexes of samples from different years were analyzed by heatmap clustering analysis. ResultsHPLC fingerprints and quantitative method of Hengzhi Kechuan capsules were established, and the methods could be used for qualitative and quantitative analysis of this preparation, which was found to be stable and reliable by method validation. The similarity of fingerprints of 15 batches of samples was 0.887-0.975, a total of 13 common peaks were calibrated, and 10 common peaks were designated, all of which were quality attribute index components. The results of quantitative analysis showed that the contents of the above 10 ingredients in the samples were 0.038-0.078, 0.115-0.251, 0.007-0.018, 0.291-0.673, 0.122-0.257, 0.887-1.905, 1.841-3.364, 1.412-2.450, 2.207-3.112, 0.650-1.161, respectively. And the contents of ginsenoside Rb1 and glycyrrhizic acid met the limit requirements in the 2020 edition of Chinese Pharmacopoeia. For the samples from 15 batches, the PA values of the 10 index components were all <10%, indicating good intra-batch homogeneity, and the PB values ranged from 33.86% to 92.97%, suggesting that the inter-batch homogeneity was poor. Heatmap clustering analysis showed that the samples from different years were clustered into separate categories, and adenosine, guanosine, safflomin A, naringin, hesperidin and agarotetrol were the main differential components. ConclusionThe intra-annual quality uniformity of Hengzhi Kechuan capsules is good and the inter-annual quality uniformity is insufficient, which may be related to the quality difference of Pinellinae Rhizoma Praeparatum, Carthami Flos, Citri Sarcodactylis Fructus, Citri Reticulatae Pericarpium, Aquilariae Lignum Resinatum, Citri Fructus, etc. In this study, the fingerprint and multi-indicator determination method of Hengzhi Kechuan capsules was established, which can be used for more accurate and efficient quality control and standardization enhancement.
10.Textual Research on Key Information of Classic Formula Houpo Qiwutang and Its Ancient and Modern Applications
Jinlong ZHANG ; Wei CHEN ; Ruobing LI ; Baikun YIN ; Yaodong GU ; Jun LEI ; Xicheng JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):213-222
Houpo Qiwutang originated from the Synopsis of the Golden Chamber, and it consists of seven medicines: Magnoliae Officinalis Cortex, Rhei Radix et Rhizoma, Aurantii Fructus Immaturus, Cinnamomi Ramulus, Zingiberis Rhizoma Recens, Glycyrrhizae Radix et Rhizoma, and Jujubae Fructus. It is a basic formula for the treatment of abdominal fullness. Through the bibliometric method, the historical history, drug base, preparation and dosage, decoction method, and ancient and modern applications of Houpu Qiwu Tang were analyzed by means of textual research. The research finds that Houpu Qiwu Tang has been passed down through the generations in an orderly manner with fewer changes. The drug base of this formula is basically clear, and the base of Magnoliae Officinalis Cortex, Rhei Radix et Rhizoma, Cinnamomi Ramulus, Zingiberis Rhizoma Recens, and Jujubae Fructus is consistent with the 2020 edition of Chinese Pharmacopoeia. The mainstream base of Aurantii Fructus Immaturus is the dried young fruit of Citrus aurantium of Rutaceae family, and the historical mainstream base of Glycyrrhizae Radix et Rhizoma is the dried root of Glycyrrhiza uralensis of Leguminosae family. The modern dosage of this formula is 110.40 g of Magnoliae Officinalis Cortex, 41.40 g of Rhei Radix et Rhizoma, 69 g of Aurantii Fructus Immaturus, 27.60 g of Cinnamomi Ramulus, 69 g of Zingiberis Rhizoma Recens, 41.40 g of Glycyrrhizae Radix et Rhizoma, and 30 g of Jujubae Fructus. In addition, the decoction method is to add 2 000 mL of water with the above seven flavors of the medicine, boil it to 800 mL, and then take 160 mL in a warm state each time. The amount of the medicine taken for each time is 22.08 g of Magnoliae Officinalis Cortex, 8.28 g of Rhei Radix et Rhizoma, 13.80 g of Aurantii Fructus Immaturus, 5.52 g of Cinnamomi Ramulus, 13.80 g of Zingiberis Rhizoma Recens, 8.28 g of Glycyrrhizae Radix et Rhizoma, and 6 g of Jujubae Fructus. The modern application of this formula involves the digestive system, respiratory system, and urinary system. It is more advantageous in digestive system diseases such as early postoperative inflammatory bowel obstruction, functional dyspepsia, gastric pain, functional abdominal distension, and gastric reflux esophagitis. By comprehensively examining the key information of Houpu Qiwu Tang, this paper aims to provide literature support for the development and clinical application of this formula.


Result Analysis
Print
Save
E-mail