1.Coring-out fistulectomy for perianal cryptoglandular fistula: a retrospective cohort study on 20 years of experience at a single center
Kil-yong LEE ; Jumyung LEE ; Eon Chul HAN ; Yoon-Hye KWON ; Seung-Bum RYOO ; Kyu Joo PARK
Annals of Surgical Treatment and Research 2022;102(3):167-175
Purpose:
Cryptoglandular fistula is one of the common anal diseases requiring surgical treatment. Various surgical techniques have been introduced; however, there is no known standard technique. Coring-out fistulectomy is a surgical technique that accurately resects only the fistula tract. However, only a few cases of this procedure have been reported.We aimed to analyze the surgical outcomes of coring-out fistulectomy for cryptoglandular anal fistulas.
Methods:
We retrospectively reviewed the medical records of patients who underwent coring-out fistulectomy for a cryptoglandular fistula between 1999 and 2019. Primary outcomes were the treatment success rate (recurrence and healing rates) and incidence of fecal incontinence.
Results:
A total of 184 patients were included in our study. The average age of the patients was 44 years (range, 16–75 years), and 88.0% were male. Twenty-four (13.0%), 13 (7.1%), and 68 patients (37.0%) underwent operation for recurrent fistula, multiple tracts, and complex type fistula, respectively. The healing rate was 92.4%, and recurrence occurred in 15 of 170 healed patients (8.8%). Thus, the treatment success rate was 84.2%. There was no fecal incontinence except in 1 patient who had preoperative fecal incontinence because of cauda equine syndrome. In multivariable analysis of the factors affecting the treatment success rate, the complex fistula (odds ratio [OR], 14.2; 95% confidence interval [CI], 4.7– 43.0; P < 0.001) and undetected internal opening during the operation (OR, 4.0; 95% CI, 1.4–11.6; P = 0.012) were significant factors.
Conclusion
Coring-out fistulectomy is a simple and feasible technique for sphincter-preserving anal fistula surgery.
2.Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study
Jumyung UM ; Jongsu PARK ; Dong Eun LEE ; Jae Eun AHN ; Ji Hyun BAEK
Psychiatry Investigation 2025;22(2):156-166
Objective:
We aimed to determine whether individuals at immediate risk of suicide could be identified using data from a commercially available wearable device.
Methods:
Thirty-nine participants experiencing acute depressive episodes and 20 age- and sex-matched healthy controls wore a commercially available wearable device (Galaxy Watch Active2) for two months. We collected data on activities, sleep, and physiological metrics like heart rate and heart rate variability using the wearable device. Participants rated their mood spontaneously twice daily on a Likert scale displayed on the device. Mood ratings by clinicians were performed at weeks 0, 2, 4, and 8. The suicide risk was assessed using the Hamilton Depression Rating Scale’s suicide item score (HAMD-3). We developed two predictive models using machine learning: a single-level model that processed all data simultaneously to identify those at immediate suicide risk (HAMD-3 scores ≥1) and a multilevel model. We compared the predictions of imminent suicide risk from both models.
Results:
Both the single-step and multi-step models effectively predicted imminent suicide risk. The multi-step model outperformed the single-step model in predicting imminent suicide risk with area under the curve scores of 0.89 compared to 0.88. In the multi-step model, the HAMD total score and heart rate variability were most significant, whereas in the single-step model, the HAMD total score and diagnosis were key predictors.
Conclusion
Wearable devices are a promising tool for identifying individuals at immediate risk of suicide. Future research with more refined temporal resolution is recommended.
3.Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study
Jumyung UM ; Jongsu PARK ; Dong Eun LEE ; Jae Eun AHN ; Ji Hyun BAEK
Psychiatry Investigation 2025;22(2):156-166
Objective:
We aimed to determine whether individuals at immediate risk of suicide could be identified using data from a commercially available wearable device.
Methods:
Thirty-nine participants experiencing acute depressive episodes and 20 age- and sex-matched healthy controls wore a commercially available wearable device (Galaxy Watch Active2) for two months. We collected data on activities, sleep, and physiological metrics like heart rate and heart rate variability using the wearable device. Participants rated their mood spontaneously twice daily on a Likert scale displayed on the device. Mood ratings by clinicians were performed at weeks 0, 2, 4, and 8. The suicide risk was assessed using the Hamilton Depression Rating Scale’s suicide item score (HAMD-3). We developed two predictive models using machine learning: a single-level model that processed all data simultaneously to identify those at immediate suicide risk (HAMD-3 scores ≥1) and a multilevel model. We compared the predictions of imminent suicide risk from both models.
Results:
Both the single-step and multi-step models effectively predicted imminent suicide risk. The multi-step model outperformed the single-step model in predicting imminent suicide risk with area under the curve scores of 0.89 compared to 0.88. In the multi-step model, the HAMD total score and heart rate variability were most significant, whereas in the single-step model, the HAMD total score and diagnosis were key predictors.
Conclusion
Wearable devices are a promising tool for identifying individuals at immediate risk of suicide. Future research with more refined temporal resolution is recommended.
4.Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study
Jumyung UM ; Jongsu PARK ; Dong Eun LEE ; Jae Eun AHN ; Ji Hyun BAEK
Psychiatry Investigation 2025;22(2):156-166
Objective:
We aimed to determine whether individuals at immediate risk of suicide could be identified using data from a commercially available wearable device.
Methods:
Thirty-nine participants experiencing acute depressive episodes and 20 age- and sex-matched healthy controls wore a commercially available wearable device (Galaxy Watch Active2) for two months. We collected data on activities, sleep, and physiological metrics like heart rate and heart rate variability using the wearable device. Participants rated their mood spontaneously twice daily on a Likert scale displayed on the device. Mood ratings by clinicians were performed at weeks 0, 2, 4, and 8. The suicide risk was assessed using the Hamilton Depression Rating Scale’s suicide item score (HAMD-3). We developed two predictive models using machine learning: a single-level model that processed all data simultaneously to identify those at immediate suicide risk (HAMD-3 scores ≥1) and a multilevel model. We compared the predictions of imminent suicide risk from both models.
Results:
Both the single-step and multi-step models effectively predicted imminent suicide risk. The multi-step model outperformed the single-step model in predicting imminent suicide risk with area under the curve scores of 0.89 compared to 0.88. In the multi-step model, the HAMD total score and heart rate variability were most significant, whereas in the single-step model, the HAMD total score and diagnosis were key predictors.
Conclusion
Wearable devices are a promising tool for identifying individuals at immediate risk of suicide. Future research with more refined temporal resolution is recommended.
5.Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study
Jumyung UM ; Jongsu PARK ; Dong Eun LEE ; Jae Eun AHN ; Ji Hyun BAEK
Psychiatry Investigation 2025;22(2):156-166
Objective:
We aimed to determine whether individuals at immediate risk of suicide could be identified using data from a commercially available wearable device.
Methods:
Thirty-nine participants experiencing acute depressive episodes and 20 age- and sex-matched healthy controls wore a commercially available wearable device (Galaxy Watch Active2) for two months. We collected data on activities, sleep, and physiological metrics like heart rate and heart rate variability using the wearable device. Participants rated their mood spontaneously twice daily on a Likert scale displayed on the device. Mood ratings by clinicians were performed at weeks 0, 2, 4, and 8. The suicide risk was assessed using the Hamilton Depression Rating Scale’s suicide item score (HAMD-3). We developed two predictive models using machine learning: a single-level model that processed all data simultaneously to identify those at immediate suicide risk (HAMD-3 scores ≥1) and a multilevel model. We compared the predictions of imminent suicide risk from both models.
Results:
Both the single-step and multi-step models effectively predicted imminent suicide risk. The multi-step model outperformed the single-step model in predicting imminent suicide risk with area under the curve scores of 0.89 compared to 0.88. In the multi-step model, the HAMD total score and heart rate variability were most significant, whereas in the single-step model, the HAMD total score and diagnosis were key predictors.
Conclusion
Wearable devices are a promising tool for identifying individuals at immediate risk of suicide. Future research with more refined temporal resolution is recommended.
6.Machine Learning Models to Identify Individuals With Imminent Suicide Risk Using a Wearable Device: A Pilot Study
Jumyung UM ; Jongsu PARK ; Dong Eun LEE ; Jae Eun AHN ; Ji Hyun BAEK
Psychiatry Investigation 2025;22(2):156-166
Objective:
We aimed to determine whether individuals at immediate risk of suicide could be identified using data from a commercially available wearable device.
Methods:
Thirty-nine participants experiencing acute depressive episodes and 20 age- and sex-matched healthy controls wore a commercially available wearable device (Galaxy Watch Active2) for two months. We collected data on activities, sleep, and physiological metrics like heart rate and heart rate variability using the wearable device. Participants rated their mood spontaneously twice daily on a Likert scale displayed on the device. Mood ratings by clinicians were performed at weeks 0, 2, 4, and 8. The suicide risk was assessed using the Hamilton Depression Rating Scale’s suicide item score (HAMD-3). We developed two predictive models using machine learning: a single-level model that processed all data simultaneously to identify those at immediate suicide risk (HAMD-3 scores ≥1) and a multilevel model. We compared the predictions of imminent suicide risk from both models.
Results:
Both the single-step and multi-step models effectively predicted imminent suicide risk. The multi-step model outperformed the single-step model in predicting imminent suicide risk with area under the curve scores of 0.89 compared to 0.88. In the multi-step model, the HAMD total score and heart rate variability were most significant, whereas in the single-step model, the HAMD total score and diagnosis were key predictors.
Conclusion
Wearable devices are a promising tool for identifying individuals at immediate risk of suicide. Future research with more refined temporal resolution is recommended.