1.Molecular mechanism of luteolin in treatment of cervical cancer based on network pharmacology and molecular docking technology
Junwei LU ; Jingzhe ZHU ; Hongru CHEN ; Jumin XIE
Journal of Clinical Medicine in Practice 2024;28(16):26-33
Objective To explore the molecular mechanism of luteolin in the treatment of cervical cancer based on network pharmacology and molecular docking technology. Methods The drug-like properties of luteolin were analyzed by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The targets of luteolin were obtained from PharmMapper, Super-PRED, and Swiss Target Prediction databases. The targets related to cervical cancer were acquired from GeneCards, OMIM, and PharmGKB databases. The intersection targets of luteolin and cervical cancer were obtained through EVenn, and the "luteolin-intersection targets-cervical cancer" network diagram was constructed by Cytoscape 3.8.1. The STRING database was used to analyze the protein-protein interaction (PPI) network of intersection targets and screen the core targets. The Database for Annotation, Visualization and Integrated Discovery (David) was used to conduct Gene Ontology (GO) gene function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of the targets. PyMoL 2.6.0, AutoDockTool 1.5.7 and OpenBabel 2.4.1 software were used to perform molecular docking between the core targets and luteolin. The survival analysis and pan-cancer analysis of the core targets were performed in the GEPIA database. Results A total of 449 targets of luteolin and 1 334 targets related to cervical cancer were obtained; there were 100 intersection targets between luteolin and cervical cancer, of which 24 were core targets, including
2.Herbal formula BaWeiBaiDuSan alleviates polymicrobial sepsis-induced liver injury via increasing the gut microbiota Lactobacillus johnsonii and regulating macrophage anti-inflammatory activity in mice.
Xiaoqing FAN ; Chutian MAI ; Ling ZUO ; Jumin HUANG ; Chun XIE ; Zebo JIANG ; Runze LI ; Xiaojun YAO ; Xingxing FAN ; Qibiao WU ; Peiyu YAN ; Liang LIU ; Jianxin CHEN ; Ying XIE ; Elaine Lai-Han LEUNG
Acta Pharmaceutica Sinica B 2023;13(3):1164-1179
Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.
3.Erratum: Author correction to 'Herbal formula BaWeiBaiDuSan alleviates polymicrobial sepsis-induced liver injury via increasing the gut microbiota Lactobacillus johnsonii and regulating macrophage anti-inflammatory activity in mice' Acta Pharmaceutica Sinica B 13 (2023) 1164-1179.
Xiaoqing FAN ; Chutian MAI ; Ling ZUO ; Jumin HUANG ; Chun XIE ; Zebo JIANG ; Runze LI ; Xiaojun YAO ; Xingxing FAN ; Qibiao WU ; Peiyu YAN ; Liang LIU ; Jianxin CHEN ; Ying XIE ; Elaine LAI-HAN LEUNG
Acta Pharmaceutica Sinica B 2023;13(8):3575-3576
[This corrects the article DOI: 10.1016/j.apsb.2022.10.016.].